3D Size-Dependent Dynamic Instability Analysis of FG Cylindrical Microshells Subjected to Combinations of Periodic Axial Compression and External Pressure Using a Hermitian C2 Finite Layer Method Based on the Consistent Couple Stress Theory

Chih Ping Wu, Meng Luen Wu, Hao Ting Hsu

研究成果: Article同行評審

3 引文 斯高帕斯(Scopus)

摘要

This work develops a three-dimensional (3D) weak formulation, based on the consistent couple stress theory (CCST), for analyzing the size-dependent dynamic instability behavior of simply-supported, functionally graded (FG) cylindrical microshells that are subjected to combinations of periodic axial compression and external pressure. In our formulation, the microshells are artificially divided into nl layers. The displacement components of each individual layer are selected as the primary variables, which are expanded as a double Fourier series in the in-plane domain and are interpolated with Hermitian C2 polynomials in the thickness direction. Incorporating the layer-wise displacement models into our weak formulation, we develop a Hermitian C2 finite layer method (FLM) for addressing the current issue. The accuracy and the convergence rate of our Hermitian C2 FLM are validated by comparing the solutions it produces with the accurate two-dimensional solutions of critical loads and critical pressures of FG cylindrical macroshells and single-walled carbon nanotubes, which were reported in the literature. The numerical results show the effects of the material length-scale parameter, the inhomogeneity index, the radius-to-thickness and length-to-radius ratios, the load magnitude ratio, and the static and dynamic load factors on the first principal and first secondary instability regions of parametric resonance of simply-supported FG cylindrical microshells are significant.

原文English
文章編號810
期刊Materials
17
發行號4
DOIs
出版狀態Published - 2024 2月

All Science Journal Classification (ASJC) codes

  • 一般材料科學
  • 凝聚態物理學

指紋

深入研究「3D Size-Dependent Dynamic Instability Analysis of FG Cylindrical Microshells Subjected to Combinations of Periodic Axial Compression and External Pressure Using a Hermitian C2 Finite Layer Method Based on the Consistent Couple Stress Theory」主題。共同形成了獨特的指紋。

引用此