A 75.3-dB SNDR 24-MS/s Ring Amplifier-Based Pipelined ADC Using Averaging Correlated Level Shifting and Reference Swapping for Reducing Errors From Finite Opamp Gain and Capacitor Mismatch

Tsung Chih Hung, Tai-Haur Kuo

研究成果: Article

摘要

This paper proposes averaging correlated level shifting (ACLS) and reference swapping (RS) techniques for simultaneously reducing errors from the finite opamp gain and capacitor mismatch in a pipelined analog-to-digital converter (ADC). The ACLS technique reduces the sensitivity of ADC accuracy to the opamp gain by averaging the finite opamp gain errors in two amplifying phases, where the error in the second amplifying phase is designed to have the opposite polarity to the one in the first amplifying phase. Meanwhile, ACLS also decreases the opamp's thermal noise. In addition, the RS utilizes the averaging operation to reduce capacitor random mismatch error and combines a simple capacitor layout arrangement to decrease capacitor gradient mismatch error. Using the ACLS and RS techniques, a 16-bit ring amplifier-based pipelined ADC without calibration is realized in a 90-nm CMOS technology. Operating at 24 MS/s for a 10-MHz sine wave input, the proposed ADC achieves a 74.3-dB signal-to-noise-and-distortion ratio (SNDR) and 85.5-dB spurious free dynamic range (SFDR), and consumes 5.1 mW, yielding Walden and Schreier figure of merits of 50.1 fJ/conversion-step and 168 dB, respectively.

原文English
文章編號08645697
頁(從 - 到)1425-1435
頁數11
期刊IEEE Journal of Solid-State Circuits
54
發行號5
DOIs
出版狀態Published - 2019 五月 1

指紋

Operational amplifiers
Digital to analog conversion
Capacitors
Thermal noise
Calibration

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

引用此文

@article{c81eeff5b0eb4811a8b807cdf08cab83,
title = "A 75.3-dB SNDR 24-MS/s Ring Amplifier-Based Pipelined ADC Using Averaging Correlated Level Shifting and Reference Swapping for Reducing Errors From Finite Opamp Gain and Capacitor Mismatch",
abstract = "This paper proposes averaging correlated level shifting (ACLS) and reference swapping (RS) techniques for simultaneously reducing errors from the finite opamp gain and capacitor mismatch in a pipelined analog-to-digital converter (ADC). The ACLS technique reduces the sensitivity of ADC accuracy to the opamp gain by averaging the finite opamp gain errors in two amplifying phases, where the error in the second amplifying phase is designed to have the opposite polarity to the one in the first amplifying phase. Meanwhile, ACLS also decreases the opamp's thermal noise. In addition, the RS utilizes the averaging operation to reduce capacitor random mismatch error and combines a simple capacitor layout arrangement to decrease capacitor gradient mismatch error. Using the ACLS and RS techniques, a 16-bit ring amplifier-based pipelined ADC without calibration is realized in a 90-nm CMOS technology. Operating at 24 MS/s for a 10-MHz sine wave input, the proposed ADC achieves a 74.3-dB signal-to-noise-and-distortion ratio (SNDR) and 85.5-dB spurious free dynamic range (SFDR), and consumes 5.1 mW, yielding Walden and Schreier figure of merits of 50.1 fJ/conversion-step and 168 dB, respectively.",
author = "Hung, {Tsung Chih} and Tai-Haur Kuo",
year = "2019",
month = "5",
day = "1",
doi = "10.1109/JSSC.2019.2891650",
language = "English",
volume = "54",
pages = "1425--1435",
journal = "IEEE Journal of Solid-State Circuits",
issn = "0018-9200",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "5",

}

TY - JOUR

T1 - A 75.3-dB SNDR 24-MS/s Ring Amplifier-Based Pipelined ADC Using Averaging Correlated Level Shifting and Reference Swapping for Reducing Errors From Finite Opamp Gain and Capacitor Mismatch

AU - Hung, Tsung Chih

AU - Kuo, Tai-Haur

PY - 2019/5/1

Y1 - 2019/5/1

N2 - This paper proposes averaging correlated level shifting (ACLS) and reference swapping (RS) techniques for simultaneously reducing errors from the finite opamp gain and capacitor mismatch in a pipelined analog-to-digital converter (ADC). The ACLS technique reduces the sensitivity of ADC accuracy to the opamp gain by averaging the finite opamp gain errors in two amplifying phases, where the error in the second amplifying phase is designed to have the opposite polarity to the one in the first amplifying phase. Meanwhile, ACLS also decreases the opamp's thermal noise. In addition, the RS utilizes the averaging operation to reduce capacitor random mismatch error and combines a simple capacitor layout arrangement to decrease capacitor gradient mismatch error. Using the ACLS and RS techniques, a 16-bit ring amplifier-based pipelined ADC without calibration is realized in a 90-nm CMOS technology. Operating at 24 MS/s for a 10-MHz sine wave input, the proposed ADC achieves a 74.3-dB signal-to-noise-and-distortion ratio (SNDR) and 85.5-dB spurious free dynamic range (SFDR), and consumes 5.1 mW, yielding Walden and Schreier figure of merits of 50.1 fJ/conversion-step and 168 dB, respectively.

AB - This paper proposes averaging correlated level shifting (ACLS) and reference swapping (RS) techniques for simultaneously reducing errors from the finite opamp gain and capacitor mismatch in a pipelined analog-to-digital converter (ADC). The ACLS technique reduces the sensitivity of ADC accuracy to the opamp gain by averaging the finite opamp gain errors in two amplifying phases, where the error in the second amplifying phase is designed to have the opposite polarity to the one in the first amplifying phase. Meanwhile, ACLS also decreases the opamp's thermal noise. In addition, the RS utilizes the averaging operation to reduce capacitor random mismatch error and combines a simple capacitor layout arrangement to decrease capacitor gradient mismatch error. Using the ACLS and RS techniques, a 16-bit ring amplifier-based pipelined ADC without calibration is realized in a 90-nm CMOS technology. Operating at 24 MS/s for a 10-MHz sine wave input, the proposed ADC achieves a 74.3-dB signal-to-noise-and-distortion ratio (SNDR) and 85.5-dB spurious free dynamic range (SFDR), and consumes 5.1 mW, yielding Walden and Schreier figure of merits of 50.1 fJ/conversion-step and 168 dB, respectively.

UR - http://www.scopus.com/inward/record.url?scp=85065102470&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85065102470&partnerID=8YFLogxK

U2 - 10.1109/JSSC.2019.2891650

DO - 10.1109/JSSC.2019.2891650

M3 - Article

AN - SCOPUS:85065102470

VL - 54

SP - 1425

EP - 1435

JO - IEEE Journal of Solid-State Circuits

JF - IEEE Journal of Solid-State Circuits

SN - 0018-9200

IS - 5

M1 - 08645697

ER -