A balancing cam mechanism for minimizing the torque fluctuation of engine camshafts

Deng Ying Lin, Bo Jiun Hou, Chao Chieh Lan

研究成果: Article同行評審

18 引文 斯高帕斯(Scopus)


This paper presents the design and experiment of a balancing cam mechanism to minimize the torque fluctuation of engine camshafts. Torque fluctuation of rotary machines causes unwanted vibration that would impair their performance and reliability. The combination of inertia, driving, and resistive torque fluctuations on engine crankshafts and camshafts is the major source of vehicle vibration. For camshafts, the magnitude of resistive torque fluctuation is more substantial than that of inertia torque fluctuation at low to medium speeds. While previous methods focused on suppressing or isolating vibration motion from engine to chassis, the proposed method seeks to directly reduce the torque fluctuation on engine shafts. The balancing mechanism consists of a cam, rocker, and spring. Given a resistive torque curve of a camshaft, the cam profile can be synthesized such that the output balancing torque cancels with the original resistive camshaft torque. Thus the camshaft will statically generate zero output torque. Based on a derived camshaft torque model, a design process of the cam profile is presented. The effect of inertia torque at various speeds is compared with the balancing torque. Finally, a prototype and its associated experiments are presented to demonstrate the torque balancing performance.

頁(從 - 到)160-175
期刊Mechanism and Machine Theory
出版狀態Published - 2017 2月 1

All Science Journal Classification (ASJC) codes

  • 生物工程
  • 材料力學
  • 機械工業
  • 電腦科學應用


深入研究「A balancing cam mechanism for minimizing the torque fluctuation of engine camshafts」主題。共同形成了獨特的指紋。