A Biogeography-Based Optimization with a Greedy Randomized Adaptive Search Procedure and the 2-Opt Algorithm for the Traveling Salesman Problem

Cheng Hsiung Tsai, Yu Da Lin, Cheng Hong Yang, Chien Kun Wang, Li Chun Chiang, Po Jui Chiang

研究成果: Article同行評審

8 引文 斯高帕斯(Scopus)

摘要

We develop a novel method to improve biogeography-based optimization (BBO) for solving the traveling salesman problem (TSP). The improved method is comprised of a greedy randomized adaptive search procedure, the 2-opt algorithm, and G2BBO. The G2BBO formulation is derived and the process flowchart is shown in this article. For solving TSP, G2BBO effectively avoids the local minimum problem and accelerates convergence by optimizing the initial values. To demonstrate, we adopt three public datasets (eil51, eil76, and kroa100) from TSPLIB and compare them with various well-known algorithms. The results of G2BBO as well as the other algorithms perform close enough to the optimal solutions in eil51 and eil76 where simple TSP coordinates are considered. In the case of kroa100, with more complicated coordinates, G2BBO shows greater performance over other methods.

原文English
文章編號5111
期刊Sustainability (Switzerland)
15
發行號6
DOIs
出版狀態Published - 2023 3月

All Science Journal Classification (ASJC) codes

  • 電腦科學(雜項)
  • 地理、規劃與發展
  • 可再生能源、永續發展與環境
  • 環境科學(雜項)
  • 能源工程與電力技術
  • 硬體和架構
  • 電腦網路與通信
  • 管理、監督、政策法律

指紋

深入研究「A Biogeography-Based Optimization with a Greedy Randomized Adaptive Search Procedure and the 2-Opt Algorithm for the Traveling Salesman Problem」主題。共同形成了獨特的指紋。

引用此