A bonding technique using hydrophilic SU-8

Yu Tzu Chen, Denz Lee

研究成果: Article同行評審

24 引文 斯高帕斯(Scopus)

摘要

In this study, we present a bonding technique for fabricating microfluidic devices with surfactant-added SU-8 (hydrophilic SU-8) as the structure. The technique is based on an adhesive wafer bonding process. The hydrophilic SU-8 plays the roles of both an adhesive layer (glue) as well as a structural layer. Due to its special feature, bonding with hydrophilic SU-8 could be conducted without pressurizing equipment. The material could define structure satisfactorily and it has a hydrophilic surface in a cured state, and has a good adhesion capability with various substrates (glass, silicon or PDMS) after oxygen plasma treatment. The performance of the material was verified by using the Raman spectroscopy to analyze the possible changes in chemical structure, measuring contact angle to characterize hydrophilicity and several tests to confirm the bonding capability. The effect of different parameters on the bonding has also been explored. 2D (one-layer hydrophilic SU-8) and 3D (two-layer hydrophilic SU-8) sandwich configurations were constructed using this bonding technique. The tests showed the bonding strength to be in the range of 2-14 kg cm-2 measured by the pull test, and the microchannels could stand up to 0.4 atm pressure drop in the hydrodynamic testing. The present material has good properties in bonding, and the procedure is fast, compatible and easily implementable with a standard photolithography. It is suitable for microstructure and microelectronics integration, and highly involved three-dimensional (3D) microstructures.

原文English
文章編號008
頁(從 - 到)1978-1984
頁數7
期刊Journal of Micromechanics and Microengineering
17
發行號10
DOIs
出版狀態Published - 2007 十月 1

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

指紋 深入研究「A bonding technique using hydrophilic SU-8」主題。共同形成了獨特的指紋。

引用此