TY - JOUR

T1 - A GPU-version lattice Boltzmann method for solving fluid-particle interaction problems

AU - Lin, San-Yih

AU - Tai, Yuan Hung

PY - 2012/10

Y1 - 2012/10

N2 - An immersed-boundary lattice Boltzmann method (IB-LBM) is developed on a graphical processing unit (GPU) to simulate fluid-particle interaction problems. This method uses the lattice Boltzmann method to solve the incompressible flow field and the immersed boundary method to handle the fluid-particle interaction. A direct forcing method is introduced in the IB method to capture the particle motion. To demonstrate of the efficiency and capabilities of the numerical method, a flow in a square pipe and sedimentations of one and many spherical particles in an enclosure are simulated. The numerical results indicate that a speedup of over 60 times when compared to the time required by a single CPU on the flow in a square pipe, a speedup of over 30-45 times on the sedimentation of one spherical particle, and a speedup of about 40-60 times on the sedimentation of large numbers of spherical particles are achieved.

AB - An immersed-boundary lattice Boltzmann method (IB-LBM) is developed on a graphical processing unit (GPU) to simulate fluid-particle interaction problems. This method uses the lattice Boltzmann method to solve the incompressible flow field and the immersed boundary method to handle the fluid-particle interaction. A direct forcing method is introduced in the IB method to capture the particle motion. To demonstrate of the efficiency and capabilities of the numerical method, a flow in a square pipe and sedimentations of one and many spherical particles in an enclosure are simulated. The numerical results indicate that a speedup of over 60 times when compared to the time required by a single CPU on the flow in a square pipe, a speedup of over 30-45 times on the sedimentation of one spherical particle, and a speedup of about 40-60 times on the sedimentation of large numbers of spherical particles are achieved.

UR - http://www.scopus.com/inward/record.url?scp=84878867923&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84878867923&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84878867923

VL - 33

SP - 391

EP - 400

JO - Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch'eng Hsuebo Pao

JF - Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch'eng Hsuebo Pao

SN - 0257-9731

IS - 5

ER -