A hybrid fuzzy time series model based on granular computing for stock price forecasting

Mu Yen Chen, Bo Tsuen Chen

研究成果: Article同行評審

140 引文 斯高帕斯(Scopus)


Given the high potential benefits and impacts of accurate stock market predictions, considerable research attention has been devoted to time series forecasting for stock markets. Over long periods, the accuracy of fuzzy time series model forecasting is invariably affected by interval length, and formulating effective interval partitioning methods can be very difficult. Previous studies largely relied on distance partitioning, but this approach neglects the distribution of datasets and can only handle scalar forecasting. But the magnitude of stock price movements is often severe and difficult to predict. Thus, the distribution of stock price datasets is always skewed and the straightforward partitioning method is not well suited to these types of time series datasets. In this research, a novel fuzzy time series model is used to forecast stock market prices. The proposed model is based on the granular computing approach with binning-based partition and entropy-based discretization methods. The proposed model is verified using experimental datasets from the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), Dow-Jones Industrial Average (DJIA), S&P 500 and IBOVESPA stock indexes, and results are compared against existing fuzzy time series models, three different SVM models, and three modern economic models - GARCH, GJR-GARCH, and Fuzzy GARCH. Compared to other current forecasting methods, the proposed models provide improved prediction accuracy and the results are verified by paired two-tailed t-tests. The experimental results clearly provide improvements for obtaining optimized linguistic intervals and ensuring the accuracy of the proposed model.

頁(從 - 到)227-241
期刊Information sciences
出版狀態Published - 2015 二月 10

All Science Journal Classification (ASJC) codes

  • 軟體
  • 控制與系統工程
  • 理論電腦科學
  • 電腦科學應用
  • 資訊系統與管理
  • 人工智慧


深入研究「A hybrid fuzzy time series model based on granular computing for stock price forecasting」主題。共同形成了獨特的指紋。