TY - JOUR
T1 - A large spatial survey of colistin-resistant gene mcr-1-carrying E. coli in rivers across Taiwan
AU - Teng, Ching Hao
AU - Wu, Pin Chieh
AU - Tang, Sen Lin
AU - Chen, Yi Chen
AU - Cheng, Ming Fang
AU - Huang, Ping Chih
AU - Ko, Wen Chien
AU - Wang, Jiun Ling
N1 - Funding Information:
This work was supported by research grants from the Ministry of Science and Technology, 106-2314-B-006-081-MY2, 109-2314-B-006-090, 108-2320-B-006-034-MY3 and 109-2314-B-006-090 and National Cheng Kung University Hospital, NCKUH-11002056.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/4
Y1 - 2021/4
N2 - Background: Colistin is one of the last-line antimicrobial agents against life-threatening infections. The distribution of the colistin resistance gene mcr-1 has been reported worldwide. However, most studies have focused on the distribution of mcr-1-positive bacteria in humans, animals, food, and sewage; few have focused on their distribution in natural environments. Method: We conducted a large spatial survey of mcr-1-positive Escherichia coli at 119 sites in 48 rivers, covering the entire island of Taiwan. We investigated the relationship between the livestock or poultry density in the surveyed riverine area and the number of mcr-1-positive E. coli in the river water. We then sequenced and characterized the isolated mcr-1-positive plasmids. Results: Seven mcr-1 positive E. coli were isolated from 5.9% of the sampling sites. The mcr-1-positive sites correlated with high chicken and pig stocking densities but not human population density or other river parameters. Four of the mcr-1-positive E. coli strains harbored epidemic IncX4 plasmids, and three of them exhibited identical sequences with a size of 33,309 bp. One of the plasmids contained identical 33,309 bp sequences but carried an additional 5711-bp transposon (Tn3 family). To our knowledge, this is the first demonstration that mcr-1-carrying IncX4 plasmids can contain an insertion of such transposons. All mcr-1-positive isolates belonged to phylogenetic group A and harbored few known virulence genes. Conclusion: This study showed a positive relationship between the number of mcr-1-positive sites and high livestock and poultry density. The sequencing analyses indicated that the epidemic plasmid in the mcr-1 isolates circulates not only in humans, animals, and food but also in the associated environments or natural habitats in Taiwan, suggesting that the surveillance of antibiotics-resistance genes for livestock or poultry farm quality control should include their associated environments.
AB - Background: Colistin is one of the last-line antimicrobial agents against life-threatening infections. The distribution of the colistin resistance gene mcr-1 has been reported worldwide. However, most studies have focused on the distribution of mcr-1-positive bacteria in humans, animals, food, and sewage; few have focused on their distribution in natural environments. Method: We conducted a large spatial survey of mcr-1-positive Escherichia coli at 119 sites in 48 rivers, covering the entire island of Taiwan. We investigated the relationship between the livestock or poultry density in the surveyed riverine area and the number of mcr-1-positive E. coli in the river water. We then sequenced and characterized the isolated mcr-1-positive plasmids. Results: Seven mcr-1 positive E. coli were isolated from 5.9% of the sampling sites. The mcr-1-positive sites correlated with high chicken and pig stocking densities but not human population density or other river parameters. Four of the mcr-1-positive E. coli strains harbored epidemic IncX4 plasmids, and three of them exhibited identical sequences with a size of 33,309 bp. One of the plasmids contained identical 33,309 bp sequences but carried an additional 5711-bp transposon (Tn3 family). To our knowledge, this is the first demonstration that mcr-1-carrying IncX4 plasmids can contain an insertion of such transposons. All mcr-1-positive isolates belonged to phylogenetic group A and harbored few known virulence genes. Conclusion: This study showed a positive relationship between the number of mcr-1-positive sites and high livestock and poultry density. The sequencing analyses indicated that the epidemic plasmid in the mcr-1 isolates circulates not only in humans, animals, and food but also in the associated environments or natural habitats in Taiwan, suggesting that the surveillance of antibiotics-resistance genes for livestock or poultry farm quality control should include their associated environments.
UR - http://www.scopus.com/inward/record.url?scp=85103311439&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103311439&partnerID=8YFLogxK
U2 - 10.3390/microorganisms9040722
DO - 10.3390/microorganisms9040722
M3 - Article
AN - SCOPUS:85103311439
SN - 2076-2607
VL - 9
JO - Microorganisms
JF - Microorganisms
IS - 4
M1 - 722
ER -