A learning approach with under-and over-sampling for imbalanced data sets

Chun Wu Yeh, Der Chiang Li, Liang Sian Lin, Tung I. Tsai

研究成果: Conference contribution

11 引文 斯高帕斯(Scopus)

摘要

It is difficult for learning models to achieve high classification performance with imbalanced data sets. To conquer the problem, this study presents a strategy involving the reduction of size of majority data set and the generation of synthetic samples of minority data set. Parkinson's disease data set is used to examine and to compare the performance of classification methods. The paired t-tests are also used to show the effectiveness of the proposed method comparing with that of the other methods.

原文English
主出版物標題Proceedings - 2016 5th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2016
編輯Ayako Hiramatsu, Tokuro Matsuo, Akimitsu Kanzaki, Norihisa Komoda
發行者Institute of Electrical and Electronics Engineers Inc.
頁面725-729
頁數5
ISBN(電子)9781467389853
DOIs
出版狀態Published - 2016 8月 31
事件5th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2016 - Kumamoto, Japan
持續時間: 2016 7月 102016 7月 14

出版系列

名字Proceedings - 2016 5th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2016

Other

Other5th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2016
國家/地區Japan
城市Kumamoto
期間16-07-1016-07-14

All Science Journal Classification (ASJC) codes

  • 資訊系統
  • 電腦網路與通信
  • 電腦科學應用
  • 電腦視覺和模式識別

指紋

深入研究「A learning approach with under-and over-sampling for imbalanced data sets」主題。共同形成了獨特的指紋。

引用此