A method to measure resistivity, mobility, and absorber thickness in thin-film solar cells with application to CdTe devices

Jian V. Li, Xiaonan Li, David S. Albin, Dean H. Levi

研究成果: Article同行評審

14 引文 斯高帕斯(Scopus)

摘要

We report a method developed upon coordinated admittance spectroscopy and capacitancevoltage techniques to measure resistivity, mobility, and absorber thickness in thin-film photovoltaic devices. The absorber thickness is measured by depletion region width at freeze-out temperatures when the free carriers cease to respond to bias modulation. Based on a lumped-parameter equivalent-circuit model, we derive the inflection frequency due to dielectric relaxation of the absorber. We show that the square of freeze-out frequency depends linearly on bias voltage. Resistivityand mobilityis calculated from the slope of this linear dependence. To demonstrate this method, we applied it to thin-film CdTe solar cells with back contacts formed under three different conditions: (A) with Cu in the carbon paste after nitricphosphoric etch, (B) without Cu in the carbon paste after nitricphosphoric etch, and (C) without Cu in the carbon paste and without nitricphosphoric etch. The measured absorber thicknesses (5.45, 5.85, and 7.95 μm, respectively) agree well with growth history and other methods. Study using this method also yields insights to back-contact formation mechanism in terms of etching loss, Te-rich layer, and Cu doping/alloying. The freeze-out exhibits thermal activation due to combined contribution from mobility and carrier concentration.

原文English
頁(從 - 到)2073-2077
頁數5
期刊Solar Energy Materials and Solar Cells
94
發行號12
DOIs
出版狀態Published - 2010 十二月 1

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films

指紋 深入研究「A method to measure resistivity, mobility, and absorber thickness in thin-film solar cells with application to CdTe devices」主題。共同形成了獨特的指紋。

引用此