A multi-scale formulation for predicting non-linear thermo-electro- mechanical response in heterogeneous bodies

Anastasia Muliana, Chien Hong Lin

研究成果: Article同行評審

18 引文 斯高帕斯(Scopus)

摘要

This study presents a multi-scale formulation for analyzing coupled heat conduction and thermo-electro-mechanical deformation in heterogeneous bodies, namely active composites. The studied active composite comprises ferroelectric inclusions dispersed in polymer matrix. The multi-scale framework is derived based on an integrated simplified micromechanical and finite element model. A non-linear thermo-electro-elastic constitutive model of materials undergoing large electric driving fields and small strains is used for the polarized ferroelectric inclusions. An integration algorithm with predictor and corrector schemes is developed to obtain approximate solutions of field variables: temperature, displacement, strain, stress, electric field, and electric displacement. The multi-scale model is capable of determining field variables at multiple length scales which is important when non-linear behaviors in the constituents of heterogeneous bodies are considered. We examine the effect of mismatches in the properties of the constituents in an active composite on the overall field coupling responses in the composite. We also compare the field coupling responses in an active composite to those of a homogeneous body, i.e., lead zirconate titanate (PZT). We finally present a simulation of controlling deformation in a smart cantilever beam using the multiscale framework.

原文English
頁(從 - 到)723-738
頁數16
期刊Journal of Intelligent Material Systems and Structures
22
發行號8
DOIs
出版狀態Published - 2011 五月 1

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanical Engineering

指紋 深入研究「A multi-scale formulation for predicting non-linear thermo-electro- mechanical response in heterogeneous bodies」主題。共同形成了獨特的指紋。

引用此