A Multi-views Models Ensemble Method for Thumb Trapeziometacarpal Joint Segmentation from Computed Tomography Images

Yen Jen Lai, I. Ling Chang, Tai Hua Yang, Li Chieh Kuo, Si Rui Leong

研究成果: Conference contribution

摘要

This paper presents a cost-effective methodology for automatic segmentation of trapeziometacarpal (TMC) joint morphology from computed tomography (CT) images. We utilize the properties of CT imaging by incorporating multiple views into our approach to enhance segmentation accuracy. Instead of a single model, our pipeline utilizes an ensemble of multiple segmentation models, each trained to recognize distinct features from different perspectives of the TMC joint. The results from these multiple models are then consolidated using a bagging technique to generate the final segmentation output. Our framework provides a promising alternative to resource-intensive 3D segmentation networks by delivering comparable performance at significantly lower computational costs. This study serves as an important step towards more efficient and effective segmentation techniques in medical imaging, facilitating better diagnostics and treatment plans.

原文English
主出版物標題GCCE 2023 - 2023 IEEE 12th Global Conference on Consumer Electronics
發行者Institute of Electrical and Electronics Engineers Inc.
頁面1033-1037
頁數5
ISBN(電子)9798350340181
DOIs
出版狀態Published - 2023
事件12th IEEE Global Conference on Consumer Electronics, GCCE 2023 - Nara, Japan
持續時間: 2023 10月 102023 10月 13

出版系列

名字GCCE 2023 - 2023 IEEE 12th Global Conference on Consumer Electronics

Conference

Conference12th IEEE Global Conference on Consumer Electronics, GCCE 2023
國家/地區Japan
城市Nara
期間23-10-1023-10-13

All Science Journal Classification (ASJC) codes

  • 人工智慧
  • 能源工程與電力技術
  • 電氣與電子工程
  • 安全、風險、可靠性和品質
  • 儀器
  • 原子與分子物理與光學

指紋

深入研究「A Multi-views Models Ensemble Method for Thumb Trapeziometacarpal Joint Segmentation from Computed Tomography Images」主題。共同形成了獨特的指紋。

引用此