摘要
This paper discusses the significance of image segmentation via the combination of both statistical and nonstatistical methods based on the hierarchical framework of multiresolution wavelet analysis (MWA) and Gaussian Markov random fields (GMRF). Microcalculations and subtle mass regions are segmented via a fuzzy c-means (FCM) algorithm using localized features. For further enhancement, expected maximization and constrained optimization is applied to a Gibbs distribution defined from the FCM clustered image labels under a Bayesian framework. The effectiveness of this novel algorithm has been clearly illustrated by real mammographic images.
原文 | English |
---|---|
主出版物標題 | Track B |
主出版物子標題 | Pattern Recognition and Signal Analysis |
發行者 | Institute of Electrical and Electronics Engineers Inc. |
頁面 | 710-714 |
頁數 | 5 |
ISBN(列印) | 081867282X, 9780818672828 |
DOIs | |
出版狀態 | Published - 1996 |
事件 | 13th International Conference on Pattern Recognition, ICPR 1996 - Vienna, Austria 持續時間: 1996 8月 25 → 1996 8月 29 |
出版系列
名字 | Proceedings - International Conference on Pattern Recognition |
---|---|
卷 | 2 |
ISSN(列印) | 1051-4651 |
Other
Other | 13th International Conference on Pattern Recognition, ICPR 1996 |
---|---|
國家/地區 | Austria |
城市 | Vienna |
期間 | 96-08-25 → 96-08-29 |
All Science Journal Classification (ASJC) codes
- 電腦視覺和模式識別