A Novel Magnetic Material by Design: Observation of Yb3+with Spin-1/2 in YbxPt5P

Xin Gui, Tay Rong Chang, Kaya Wei, Marcus J. Daum, David E. Graf, Ryan E. Baumbach, Martin Mourigal, Weiwei Xie

研究成果: Article同行評審

1 引文 斯高帕斯(Scopus)


The localized f-electrons enrich the magnetic properties in rare-earth-based intermetallics. Among those, compounds with heavier 4d and 5d transition metals are even more fascinating because anomalous electronic properties may be induced by the hybridization of 4f and itinerant conduction electrons primarily from the d orbitals. Here, we describe the observation of trivalent Yb3+with S = 1/2 at low temperatures in YbxPt5P, the first of a new family of materials. YbxPt5P (0.23 ≤ x ≤ 0.96) phases were synthesized and structurally characterized. They exhibit a large homogeneity width with the Yb ratio exclusively occupying the 1a site in the anti-CeCoIn5structure. Moreover, a sudden resistivity drop could be found in YbxPt5P below ∼0.6 K, which requires further investigation. First-principles electronic structure calculations substantiate the antiferromagnetic ground state and indicate that two-dimensional nesting around the Fermi level may give rise to exotic physical properties, such as superconductivity. YbxPt5P appears to be a unique case among materials.

頁(從 - 到)2023-2030
期刊ACS Central Science
出版狀態Published - 2020 十一月 25

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)

指紋 深入研究「A Novel Magnetic Material by Design: Observation of Yb<sup>3+</sup>with Spin-1/2 in Yb<sub>x</sub>Pt<sub>5</sub>P」主題。共同形成了獨特的指紋。