A novel poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes nanocomposite with high electrocatalytic activity for nitrite oxidation

Chia Yu Lin, A. Balamurugan, Yi Hsuan Lai, Kuo Chuan Ho

研究成果: Article同行評審

81 引文 斯高帕斯(Scopus)

摘要

In the present work, the oxidative electrochemistry of nitrite on the poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes-(PEDOT/FePc/MWCNT) modified screen-printed carbon electrodes (SPCE) has been investigated. The parameters, such as overpotential, current density and rate constant at PEDOT/FePc/MWCNT-modified SPCE, were compared with an un-modified, FePc-, and FePc/MWCNT-modified SPCE for electro-oxidation of nitrite. As compared with the un-modified SPCE, an increase in the anodic peak current density (Jpa) (∼100%) along with a decrease in the anodic peak potential (Epa) of ∼150 mV for electro-oxidation of nitrite at the FePc-modified SPCE was observed. When an under-layer of MWCNT was introduced onto FePc-modified SPCE, denoted as FePc/MWCNT-modified SPCE, and the number of FePc/MWCNT bilayer was optimized, the heterogeneous electron transfer rate constant (k) at FePc/MWCNT-modified SPCE was enhanced about 7.8 times as compared with that at FePc-modified SPCE. Moreover, as a layer of PEDOT film was electrodeposited onto the FePc/MWCNT-modified SPCE, denoted as PEDOT/FePc/MWCNT-modified SPCE, a significant increase in current response along with a remarkable decrease in Epa were noticed. This can be attributed to the pre-concentration effect induced by the electrostatic interaction between the negatively charged nitrite and oxidized PEDOT film. On the whole, the PEDOT/FePc/MWCNT-modified SPCE greatly reduces the overpotential of ∼330 mV along with 3.5 times enhanced the peak current density for the electro-oxidation of nitrite as compared with un-modified SPCE. The sensitivity and limit of detection (S/N = 3) for the PEDOT/FePc/MWCNT-modified SPCE were found to be as 638 mA cm-2 M-1 and 71 nM, respectively. Notably, PEDOT/FePc/MWCNT-modified SPCE has a lower sensing potential than compared to several other modified electrodes. The developed sensor was also applied for the determination of nitrite in tap water sample.

原文English
頁(從 - 到)1905-1911
頁數7
期刊Talanta
82
發行號5
DOIs
出版狀態Published - 2010 10月 15

All Science Journal Classification (ASJC) codes

  • 分析化學

指紋

深入研究「A novel poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes nanocomposite with high electrocatalytic activity for nitrite oxidation」主題。共同形成了獨特的指紋。

引用此