A refined asymptotic theory for dynamic analysis of doubly curved laminated shells

Chih Ping Wu, Jiann Quo Tarn, Shi Chang Tang

研究成果: Article

21 引文 斯高帕斯(Scopus)

摘要

The asymptotic theory developed recently for dynamic analysis of doubly curved laminated shells is refined by including the transverse rotations as auxiliary variables. The theory embraces the first-order shear deformation theory (FSDT) and the higher-order shear deformation theory (HSDT) as the first-order approximation. Higher-order corrections to the approximation are determined by solving the FSDT or HSDT equations in a hierarchic way. The secular terms in the asymptotic solution are eliminated systematically by means of multiple scales and solvability conditions for the higher-order equations. The performance of the refined theory is illustrated by applying it to benchmark problems. Numerical comparisons are made to examine the convergence of the solutions.

原文English
頁(從 - 到)1953-1979
頁數27
期刊International Journal of Solids and Structures
35
發行號16
DOIs
出版狀態Published - 1998 六月

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Applied Mathematics

指紋 深入研究「A refined asymptotic theory for dynamic analysis of doubly curved laminated shells」主題。共同形成了獨特的指紋。

  • 引用此