A Robust 2D-SLAM Technology with Environmental Variation Adaptability

Li Hsin Chen, Chao Chung Peng

研究成果: Article同行評審

3 引文 斯高帕斯(Scopus)


Simultaneous localization and mapping (SLAM) in complicated indoor/outdoor unknown environments is challenging. With a demand on high mobility and high integrity intelligent robotics, it is desired that the SLAM system should be portable and possibly standalone. To carry out the pose estimation as well as the mapping without relying on the information from other sensors, such as image, inertial measurement unit, rotary encoder of ground vehicle and so on, a single 2D light detection and ranging (LiDAR) is considered in this paper. In order to fulfill a robust 2D SLAM technology in unknown environments, the principal component analysis (PCA) is utilized to evaluate LiDAR scan contours and to carry out a corridor detector. The corridor detector is further extended to achieve adaptive unstable points removal, mapping probability adjustment as well as loop closure. Based on an adaptive grid map segmentation scheme, the cumulative mapping errors can obviously be reduced and a precise 2D map can be eventually carried out. Many experiments are conducted to verify the proposed method. Finally, for comparison, this paper utilizes the scan data and ground truth provided by the Computer Science and Artificial Intelligence Laboratory (CSAIL) at the Massachusetts Institute of Technology (MIT), to verify the localization precision of the proposed algorithm. Experiment shows that from the scan data in the route up to about 350 m, the maximum error can be as low as about 20 cm.

頁(從 - 到)11475-11491
期刊IEEE Sensors Journal
出版狀態Published - 2019 十二月 1

All Science Journal Classification (ASJC) codes

  • Instrumentation
  • Electrical and Electronic Engineering

指紋 深入研究「A Robust 2D-SLAM Technology with Environmental Variation Adaptability」主題。共同形成了獨特的指紋。