A Secure Framework in Vertical and Horizontal Federated Learning Utilizing Homomorphic Encryption

Li Yin Bai, Pei Hsuan Tsai

研究成果: Conference contribution

1 引文 斯高帕斯(Scopus)

摘要

To ensure data security and model training among different institutions, this paper combines vertical federated learning and horizontal federated learning. It utilizes homomorphic encryption to encrypt feature data and model weights, designing a secure framework for vertical and horizontal federated learning. This framework is suitable for binary classification applications. It enables various institutions within the same field, possessing the same feature data, and institutions from different field with identical client samples, to securely conduct federated learning training without exposing their privacy data.

原文English
主出版物標題Proceedings of IEEE/IFIP Network Operations and Management Symposium 2024, NOMS 2024
編輯James Won-Ki Hong, Seung-Joon Seok, Yuji Nomura, You-Chiun Wang, Baek-Young Choi, Myung-Sup Kim, Roberto Riggio, Meng-Hsun Tsai, Carlos Raniery Paula dos Santos
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9798350327939
DOIs
出版狀態Published - 2024
事件2024 IEEE/IFIP Network Operations and Management Symposium, NOMS 2024 - Seoul, Korea, Republic of
持續時間: 2024 5月 62024 5月 10

出版系列

名字Proceedings of IEEE/IFIP Network Operations and Management Symposium 2024, NOMS 2024

Conference

Conference2024 IEEE/IFIP Network Operations and Management Symposium, NOMS 2024
國家/地區Korea, Republic of
城市Seoul
期間24-05-0624-05-10

All Science Journal Classification (ASJC) codes

  • 人工智慧
  • 電腦網路與通信
  • 資訊系統與管理
  • 建模與模擬

引用此