摘要
The problem of gravitational wave parameter estimation and source localization is crucial in gravitational wave astronomy. Gravitational waves emitted by compact binary coalescences in the sensitivity band of second-generation ground-based detectors could have non-negligible eccentricities. Thus, it is an interesting topic to study how the eccentricity of a binary source affects and improves the accuracy of its localization (and the signal-to-noise ratio). In this work, we continue to investigate this effect with the enhanced postcircular waveform model. Using the Fisher information matrix method, we determine the accuracy of source localization with three ground-based detector networks. As expected, the accuracy of source localization is improved considerably with more detectors in a network. We find that the accuracy also increases significantly by increasing the eccentricity for the large total mass (M≥40 M) binaries with all three networks. For the small total mass (M<40 M) binaries, this effect is negligible. For the smaller total mass (M<5 M) binaries, the accuracy could be even worse at some orientations with increasing eccentricity. This phenomenon comes mainly from how well the frequency of the higher harmonic modes induced by increasing eccentricity coincides with the sensitive bandwidth of the detectors. For the case of the 100 M black hole binary, the improvement factor is about 2 in general when the eccentricity grows from 0.0 to 0.4. For the cases of the 22 M black hole binary and the 2.74 M neutron star binary, the improvement factor is less than 1.1, and it may be less than 1 at some orientations.
原文 | English |
---|---|
文章編號 | 124003 |
期刊 | Physical Review D |
卷 | 100 |
發行號 | 12 |
DOIs | |
出版狀態 | Published - 2019 12月 2 |
All Science Journal Classification (ASJC) codes
- 物理與天文學(雜項)
指紋
深入研究「Accuracy of source localization for eccentric inspiraling binary mergers using a ground-based detector network」主題。共同形成了獨特的指紋。引用此
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Accuracy of source localization for eccentric inspiraling binary mergers using a ground-based detector network. / Pan, Hsing Po; Lin, Chun Yu; Cao, Zhoujian; Yo, Hwei Jang.
於: Physical Review D, 卷 100, 編號 12, 124003, 02.12.2019.研究成果: Article › 同行評審
TY - JOUR
T1 - Accuracy of source localization for eccentric inspiraling binary mergers using a ground-based detector network
AU - Pan, Hsing Po
AU - Lin, Chun Yu
AU - Cao, Zhoujian
AU - Yo, Hwei Jang
N1 - Funding Information: We are very grateful to the anonymous referee for his useful comments that improved the quality of this paper. This work was supported by the Ministry of Science and Technology under Grant No. MOST 106-2112-M-006-011. Z. Cao was supported by the NSFC (Grants No. 11690023 and No. 11622546) and “the Fundamental Research Funds for the Central Universities” and the “Interdiscipline Research Funds of Beijing Normal University.” We are grateful to the National Center for High-Performance Computing and Institute of Astronomy and Astrophysics, Academia Sinica, for providing the computing resource. [1] 1 G. M. Harry ( LIGO Scientific Collaboration ) , Classical Quantum Gravity 27 , 084006 ( 2010 ). CQGRDG 0264-9381 10.1088/0264-9381/27/8/084006 [2] 2 F. Acernese , M. Alshourbagy , P. Amico , F. Antonucci , Classical Quantum Gravity 25 , 184001 ( 2008 ). CQGRDG 0264-9381 10.1088/0264-9381/25/18/184001 [3] 3 B. P. Abbott , R. Abbott , T. D. Abbott , S. Abraham , F. Acernese ( LIGO Scientific and Virgo Collaborations ) , Phys. Rev. X 9 , 031040 ( 2019 ). PRXHAE 2160-3308 10.1103/PhysRevX.9.031040 [4] 4 K. Somiya , Classical Quantum Gravity 29 , 124007 ( 2012 ). CQGRDG 0264-9381 10.1088/0264-9381/29/12/124007 [5] 5 B. Iyer and IndIGO , LIGO Technical Report No. LIGO-M1100296-v2 , 2011 . [6] 6 B. P. Abbott , R. Abbott , T. D. Abbott , M. R. Abernathy , F. Acernese ( LIGO Scientific and Virgo Collaborations ) , Living Rev. Relativity 19 , 1 ( 2016 ). 1433-8351 10.1007/lrr-2016-1 [7] 7 R.-G. Cai , Z. Cao , Z.-K. Guo , S.-J. Wang , and T. Yang , Natl. Sci. Rev. 4 , 687 ( 2017 ). 10.1093/nsr/nwx029 [8] 8 LIGO Scientific Collaboration , arXiv:1904.03187 . [9] 9 A. Freise , S. Chelkowski , S. Hild , W. D. Pozzo , A. Perreca , and A. Vecchio , Classical Quantum Gravity 26 , 085012 ( 2009 ). CQGRDG 0264-9381 10.1088/0264-9381/26/8/085012 [10] 10 B. P. Abbott , R. Abbott , T. D. Abbott , M. R. Abernathy , K. Ackley , Classical Quantum Gravity 34 , 044001 ( 2017 ). CQGRDG 0264-9381 10.1088/1361-6382/aa51f4 [11] 11 P. Amaro-Seoane , H. Audley , S. Babak , J. Baker , E. Barausse , arXiv:1702.00786 . [12] 12 X. Gong , S. Xu , S. Bai , Z. Cao , G. Chen , Classical Quantum Gravity 28 , 094012 ( 2011 ). CQGRDG 0264-9381 10.1088/0264-9381/28/9/094012 [13] 13 J. Luo , L.-S. Chen , H.-Z. Duan , Y.-G. Gong , S. Hu , Classical Quantum Gravity 33 , 035010 ( 2016 ). CQGRDG 0264-9381 10.1088/0264-9381/33/3/035010 [14] 14 A. Ghosh , N. K. Johnson-McDaniel , A. Ghosh , C. K. Mishra , P. Ajith , W. Del Pozzo , C. P. L. Berry , A. B. Nielsen , and L. London , Classical Quantum Gravity 35 , 014002 ( 2018 ). CQGRDG 0264-9381 10.1088/1361-6382/aa972e [15] 15 L. S. Finn , Phys. Rev. D 46 , 5236 ( 1992 ). PRVDAQ 0556-2821 10.1103/PhysRevD.46.5236 [16] 16 L. S. Finn and D. F. Chernoff , Phys. Rev. D 47 , 2198 ( 1993 ). PRVDAQ 0556-2821 10.1103/PhysRevD.47.2198 [17] 17 D. Marković , Phys. Rev. D 48 , 4738 ( 1993 ). PRVDAQ 0556-2821 10.1103/PhysRevD.48.4738 [18] 18 C. Cutler and E. E. Flanagan , Phys. Rev. D 49 , 2658 ( 1994 ). PRVDAQ 0556-2821 10.1103/PhysRevD.49.2658 [19] 19 K. Grover , S. Fairhurst , B. F. Farr , I. Mandel , C. Rodriguez , T. Sidery , and A. Vecchio , Phys. Rev. D 89 , 042004 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.89.042004 [20] 20 P. C. Peters and J. Mathews , Phys. Rev. 131 , 435 ( 1963 ). PHRVAO 0031-899X 10.1103/PhysRev.131.435 [21] 21 P. C. Peters , Phys. Rev. 136 , B1224 ( 1964 ). PHRVAO 0031-899X 10.1103/PhysRev.136.B1224 [22] 22 Y. Kozai , Astron. J. 67 , 591 ( 1962 ). ANJOAA 0004-6256 10.1086/108790 [23] 23 L. Wen , Astrophys. J. 598 , 419 ( 2003 ). ASJOAB 0004-637X 10.1086/378794 [24] 24 K. Silsbee and S. Tremaine , Astrophys. J. 836 , 39 ( 2017 ). ASJOAB 0004-637X 10.3847/1538-4357/aa5729 [25] 25 F. Antonini , S. Toonen , and A. S. Hamers , Astrophys. J. 841 , 77 ( 2017 ). ASJOAB 0004-637X 10.3847/1538-4357/aa6f5e [26] 26 B. Liu , D. Lai , and Y.-H. Wang , arXiv:1905.00427 . [27] 27 J. Samsing , M. MacLeod , and E. Ramirez-Ruiz , Astrophys. J. 784 , 71 ( 2014 ). ASJOAB 0004-637X 10.1088/0004-637X/784/1/71 [28] 28 J. Samsing , Phys. Rev. D 97 , 103014 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.97.103014 [29] 29 J. Samsing , A. Askar , and M. Giersz , Astrophys. J. 855 , 124 ( 2018 ). ASJOAB 0004-637X 10.3847/1538-4357/aaab52 [30] 30 C. L. Rodriguez , P. Amaro-Seoane , S. Chatterjee , and F. A. Rasio , Phys. Rev. Lett. 120 , 151101 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.120.151101 [31] 31 C. L. Rodriguez , P. Amaro-Seoane , S. Chatterjee , K. Kremer , F. A. Rasio , J. Samsing , C. S. Ye , and M. Zevin , Phys. Rev. D 98 , 123005 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.98.123005 [32] 32 R. M. O’Leary , B. Kocsis , and A. Loeb , Mon. Not. R. Astron. Soc. 395 , 2127 ( 2009 ). MNRAA4 0035-8711 10.1111/j.1365-2966.2009.14653.x [33] 33 L. Gondán , B. Kocsis , P. Raffai , and Z. Frei , Astrophys. J. 860 , 5 ( 2018 ). ASJOAB 0004-637X 10.3847/1538-4357/aabfee [34] 34 A. Rasskazov and B. Kocsis , Astrophys. J. 881 , 20 ( 2019 ). ASJOAB 0004-637X 10.3847/1538-4357/ab2c74 [35] 35 M. Zevin , J. Samsing , C. Rodriguez , C.-J. Haster , and E. Ramirez-Ruiz , Astrophys. J. 871 , 91 ( 2019 ). ASJOAB 0004-637X 10.3847/1538-4357/aaf6ec [36] 36 M. Arca-Sedda , G. Li , and B. Kocsis , arXiv:1805.06458 . [37] 37 G. Fragione and B. Kocsis , Mon. Not. R. Astron. Soc. 486 , 4781 ( 2019 ). MNRAA4 0035-8711 10.1093/mnras/stz1175 [38] 38 L. P. Singer and L. R. Price , Phys. Rev. D 93 , 024013 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.93.024013 [39] 39 E. Thrane and C. Talbot , Pub. Astron. Soc. Aust. 36 , e010 ( 2019 ). PASAFO 1323-3580 10.1017/pasa.2019.2 [40] 40 S. Nissanke , J. Sievers , N. Dalal , and D. Holz , Astrophys. J. 739 , 99 ( 2011 ). ASJOAB 0004-637X 10.1088/0004-637X/739/2/99 [41] 41 R. O’Shaughnessy , B. Farr , E. Ochsner , H.-S. Cho , V. Raymond , C. Kim , and C.-H. Lee , Phys. Rev. D 89 , 102005 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.89.102005 [42] 42 T. Cokelaer , Classical Quantum Gravity 25 , 184007 ( 2008 ). CQGRDG 0264-9381 10.1088/0264-9381/25/18/184007 [43] 43 A. Vecchio , Phys. Rev. D 70 , 042001 ( 2004 ). PRVDAQ 1550-7998 10.1103/PhysRevD.70.042001 [44] 44 P. Ajith and S. Bose , Phys. Rev. D 79 , 084032 ( 2009 ). PRVDAQ 1550-7998 10.1103/PhysRevD.79.084032 [45] 45 K. Kyutoku and N. Seto , Mon. Not. R. Astron. Soc. 441 , 1934 ( 2014 ). MNRAA4 0035-8711 10.1093/mnras/stu698 [46] 46 L. Gondán , B. Kocsis , P. Raffai , and Z. Frei , Astrophys. J. 855 , 34 ( 2018 ). ASJOAB 0004-637X 10.3847/1538-4357/aaad0e [47] 47 L. Gondán and B. Kocsis , Astrophys. J. 871 , 178 ( 2019 ). ASJOAB 0004-637X 10.3847/1538-4357/aaf893 [48] 48 B. Mikóczi , B. Kocsis , P. Forgács , and M. Vasúth , Phys. Rev. D 86 , 104027 ( 2012 ). PRVDAQ 1550-7998 10.1103/PhysRevD.86.104027 [49] 49 B. Sun , Z. Cao , Y. Wang , and H.-C. Yeh , Phys. Rev. D 92 , 044034 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.92.044034 [50] 50 S. Fairhurst , Classical Quantum Gravity 28 , 105021 ( 2011 ). CQGRDG 0264-9381 10.1088/0264-9381/28/10/105021 [51] 51 F. Cavalier , M. Barsuglia , M.-A. Bizouard , V. Brisson , A.-C. Clapson , M. Davier , P. Hello , S. Kreckelbergh , N. Leroy , and M. Varvella , Phys. Rev. D 74 , 082004 ( 2006 ). PRVDAQ 1550-7998 10.1103/PhysRevD.74.082004 [52] 52 L. Wen and Y. Chen , Phys. Rev. D 81 , 082001 ( 2010 ). PRVDAQ 1550-7998 10.1103/PhysRevD.81.082001 [53] 53 S. Ma , Z. Cao , C.-Y. Lin , H.-P. Pan , and H.-J. Yo , Phys. Rev. D 96 , 084046 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.084046 [54] 54 E. A. Huerta , P. Kumar , S. T. McWilliams , R. O’Shaughnessy , and N. Yunes , Phys. Rev. D 90 , 084016 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.90.084016 [55] 55 N. Yunes , K. G. Arun , E. Berti , and C. M. Will , Phys. Rev. D 80 , 084001 ( 2009 ). PRVDAQ 1550-7998 10.1103/PhysRevD.80.084001 [56] 56 I. Hinder , F. Herrmann , P. Laguna , and D. Shoemaker , Phys. Rev. D 82 , 024033 ( 2010 ). PRVDAQ 1550-7998 10.1103/PhysRevD.82.024033 [57] 57 D. A. Brown , P. Kumar , and A. H. Nitz , Phys. Rev. D 87 , 082004 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.87.082004 [58] 58 A. Buonanno , B. R. Iyer , E. Ochsner , Y. Pan , and B. S. Sathyaprakash , Phys. Rev. D 80 , 084043 ( 2009 ). PRVDAQ 1550-7998 10.1103/PhysRevD.80.084043 [59] 59 M. Tessmer and G. Schäfer , Phys. Rev. D 82 , 124064 ( 2010 ). PRVDAQ 1550-7998 10.1103/PhysRevD.82.124064 [60] 60 M. Tessmer , J. Hartung , and G. Schäfer , Classical Quantum Gravity 27 , 165005 ( 2010 ). CQGRDG 0264-9381 10.1088/0264-9381/27/16/165005 [61] 61 M. Tessmer and G. Schäfer , Ann. Phys. (Amsterdam) 523 , 813 ( 2011 ). APNYA6 0003-4916 10.1002/andp.201100007 [62] 62 K. G. Arun , B. R. Iyer , B. S. Sathyaprakash , and P. A. Sundararajan , Phys. Rev. D 71 , 084008 ( 2005 ). PRVDAQ 1550-7998 10.1103/PhysRevD.71.084008 [63] 63 A. Manzotti and A. Dietz , arXiv:1202.4031 . [64] 64 https://github.com/lscsoft/lalsuite/tree/master/lalsimulation/src . [65] 65 A. Pai , S. Dhurandhar , and S. Bose , Phys. Rev. D 64 , 042004 ( 2001 ). PRVDAQ 0556-2821 10.1103/PhysRevD.64.042004 [66] 66 B. F. Schutz , Classical Quantum Gravity 28 , 125023 ( 2011 ). CQGRDG 0264-9381 10.1088/0264-9381/28/12/125023 [67] 67 P. Raffai , L. Gondn , I. S. Heng , N. Kelecsnyi , J. Logue , Z. Mrka , and S. Mrka , Classical Quantum Gravity 30 , 155004 ( 2013 ). CQGRDG 0264-9381 10.1088/0264-9381/30/15/155004 [68] 68 H. Tagoshi , C. K. Mishra , A. Pai , and K. G. Arun , Phys. Rev. D 90 , 024053 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.90.024053 [69] e 10 Hz is close to the initial eccentricity e 0 in this work, which is considered at the frequency f min = 20 Hz . [70] 70 P. Barriga , D. G. Blair , D. Coward , J. Davidson , J.-C. Dumas , Classical Quantum Gravity 27 , 084005 ( 2010 ). CQGRDG 0264-9381 10.1088/0264-9381/27/8/084005 [71] 71 J. Munch , J. Marx , S. Whitcomb , A. Lazzarini , D. Blair , https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=11666 ( 2011 ). Publisher Copyright: © 2019 American Physical Society.
PY - 2019/12/2
Y1 - 2019/12/2
N2 - The problem of gravitational wave parameter estimation and source localization is crucial in gravitational wave astronomy. Gravitational waves emitted by compact binary coalescences in the sensitivity band of second-generation ground-based detectors could have non-negligible eccentricities. Thus, it is an interesting topic to study how the eccentricity of a binary source affects and improves the accuracy of its localization (and the signal-to-noise ratio). In this work, we continue to investigate this effect with the enhanced postcircular waveform model. Using the Fisher information matrix method, we determine the accuracy of source localization with three ground-based detector networks. As expected, the accuracy of source localization is improved considerably with more detectors in a network. We find that the accuracy also increases significantly by increasing the eccentricity for the large total mass (M≥40 M) binaries with all three networks. For the small total mass (M<40 M) binaries, this effect is negligible. For the smaller total mass (M<5 M) binaries, the accuracy could be even worse at some orientations with increasing eccentricity. This phenomenon comes mainly from how well the frequency of the higher harmonic modes induced by increasing eccentricity coincides with the sensitive bandwidth of the detectors. For the case of the 100 M black hole binary, the improvement factor is about 2 in general when the eccentricity grows from 0.0 to 0.4. For the cases of the 22 M black hole binary and the 2.74 M neutron star binary, the improvement factor is less than 1.1, and it may be less than 1 at some orientations.
AB - The problem of gravitational wave parameter estimation and source localization is crucial in gravitational wave astronomy. Gravitational waves emitted by compact binary coalescences in the sensitivity band of second-generation ground-based detectors could have non-negligible eccentricities. Thus, it is an interesting topic to study how the eccentricity of a binary source affects and improves the accuracy of its localization (and the signal-to-noise ratio). In this work, we continue to investigate this effect with the enhanced postcircular waveform model. Using the Fisher information matrix method, we determine the accuracy of source localization with three ground-based detector networks. As expected, the accuracy of source localization is improved considerably with more detectors in a network. We find that the accuracy also increases significantly by increasing the eccentricity for the large total mass (M≥40 M) binaries with all three networks. For the small total mass (M<40 M) binaries, this effect is negligible. For the smaller total mass (M<5 M) binaries, the accuracy could be even worse at some orientations with increasing eccentricity. This phenomenon comes mainly from how well the frequency of the higher harmonic modes induced by increasing eccentricity coincides with the sensitive bandwidth of the detectors. For the case of the 100 M black hole binary, the improvement factor is about 2 in general when the eccentricity grows from 0.0 to 0.4. For the cases of the 22 M black hole binary and the 2.74 M neutron star binary, the improvement factor is less than 1.1, and it may be less than 1 at some orientations.
UR - http://www.scopus.com/inward/record.url?scp=85076764223&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076764223&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.100.124003
DO - 10.1103/PhysRevD.100.124003
M3 - Article
AN - SCOPUS:85076764223
VL - 100
JO - Physical Review D
JF - Physical Review D
SN - 2470-0010
IS - 12
M1 - 124003
ER -