Acute and long-term treadmill running differentially induce c-Fos expression in region- and time-dependent manners in mouse brain

Sheng Feng Tsai, Yu Wen Liu, Yu Min Kuo

研究成果: Article

摘要

Acute and long-term exercise differentially affect brain functions. It has been suggested that neuronal activation is one of the mechanisms for exercise-induced enhancement of brain functions. However, the differential effects of acute and long-term exercise on the spatial and temporal profiles of neuronal activation in the brain have been scarcely explored. In this study, we profiled the expression of c-Fos, a marker of neuronal activation, in selected 26 brain regions of 2-month-old male C57/B6 mice that received either a single bout of treadmill running (acute exercise) or a 4-week treadmill training (long-term exercise) at the same duration (1 h/day) and intensity (10 m/min). The c-Fos expression was determined before, immediately after, and 2 h after the run. The results showed that acute exercise increased the densities of c-Fos+ cells in the ventral hippocampal CA1 region, followed by (in a high to low order) the primary somatosensory cortex, other hippocampal subregions, and striatum immediately after the run; significant changes remained evident in the hippocampal subregions after a 2-h rest. Long-term exercise increased the densities of c-Fos+ cells in the striatum, followed by the primary somatosensory, primary and secondary motor cortices, hippocampal subregions, hypothalamic nuclei, and lateral periaqueductal gray; significant changes remained evident in the striatum, hippocampal subregions, hypothalamic nuclei, and lateral periaqueductal gray after a 2-h rest. Interestingly, the densities of c-Fos+ cells in the substantia nigra and ventral tegmental area only increased after a 2-h rest after the run in the long-term exercise group. The densities of c-Fos+ cells were positively correlated with the expression of brain-derived neurotrophic factor in the selected brain regions. In conclusion, both acute and long-term treadmill running at mild intensity induce c-Fos expression in the limbic system and movement-associated cortical and subcortical regions, with long-term exercise involving more brain regions (i.e., hypothalamus and periaqueductal gray) and longer lasting effects.

原文English
頁(從 - 到)2677-2689
頁數13
期刊Brain Structure and Function
224
發行號8
DOIs
出版狀態Published - 2019 十一月 1

指紋

Running
Periaqueductal Gray
Brain
Lateral Hypothalamic Area
Motor Cortex
Exercise
Hippocampal CA1 Region
Limbic System
Ventral Tegmental Area
Somatosensory Cortex
Brain-Derived Neurotrophic Factor
Substantia Nigra
Hypothalamus

All Science Journal Classification (ASJC) codes

  • Anatomy
  • Neuroscience(all)
  • Histology

引用此文

@article{d70cb996453e46e591d5167a0fcbc946,
title = "Acute and long-term treadmill running differentially induce c-Fos expression in region- and time-dependent manners in mouse brain",
abstract = "Acute and long-term exercise differentially affect brain functions. It has been suggested that neuronal activation is one of the mechanisms for exercise-induced enhancement of brain functions. However, the differential effects of acute and long-term exercise on the spatial and temporal profiles of neuronal activation in the brain have been scarcely explored. In this study, we profiled the expression of c-Fos, a marker of neuronal activation, in selected 26 brain regions of 2-month-old male C57/B6 mice that received either a single bout of treadmill running (acute exercise) or a 4-week treadmill training (long-term exercise) at the same duration (1 h/day) and intensity (10 m/min). The c-Fos expression was determined before, immediately after, and 2 h after the run. The results showed that acute exercise increased the densities of c-Fos+ cells in the ventral hippocampal CA1 region, followed by (in a high to low order) the primary somatosensory cortex, other hippocampal subregions, and striatum immediately after the run; significant changes remained evident in the hippocampal subregions after a 2-h rest. Long-term exercise increased the densities of c-Fos+ cells in the striatum, followed by the primary somatosensory, primary and secondary motor cortices, hippocampal subregions, hypothalamic nuclei, and lateral periaqueductal gray; significant changes remained evident in the striatum, hippocampal subregions, hypothalamic nuclei, and lateral periaqueductal gray after a 2-h rest. Interestingly, the densities of c-Fos+ cells in the substantia nigra and ventral tegmental area only increased after a 2-h rest after the run in the long-term exercise group. The densities of c-Fos+ cells were positively correlated with the expression of brain-derived neurotrophic factor in the selected brain regions. In conclusion, both acute and long-term treadmill running at mild intensity induce c-Fos expression in the limbic system and movement-associated cortical and subcortical regions, with long-term exercise involving more brain regions (i.e., hypothalamus and periaqueductal gray) and longer lasting effects.",
author = "Tsai, {Sheng Feng} and Liu, {Yu Wen} and Kuo, {Yu Min}",
year = "2019",
month = "11",
day = "1",
doi = "10.1007/s00429-019-01926-5",
language = "English",
volume = "224",
pages = "2677--2689",
journal = "Brain Structure and Function",
issn = "1863-2653",
number = "8",

}

TY - JOUR

T1 - Acute and long-term treadmill running differentially induce c-Fos expression in region- and time-dependent manners in mouse brain

AU - Tsai, Sheng Feng

AU - Liu, Yu Wen

AU - Kuo, Yu Min

PY - 2019/11/1

Y1 - 2019/11/1

N2 - Acute and long-term exercise differentially affect brain functions. It has been suggested that neuronal activation is one of the mechanisms for exercise-induced enhancement of brain functions. However, the differential effects of acute and long-term exercise on the spatial and temporal profiles of neuronal activation in the brain have been scarcely explored. In this study, we profiled the expression of c-Fos, a marker of neuronal activation, in selected 26 brain regions of 2-month-old male C57/B6 mice that received either a single bout of treadmill running (acute exercise) or a 4-week treadmill training (long-term exercise) at the same duration (1 h/day) and intensity (10 m/min). The c-Fos expression was determined before, immediately after, and 2 h after the run. The results showed that acute exercise increased the densities of c-Fos+ cells in the ventral hippocampal CA1 region, followed by (in a high to low order) the primary somatosensory cortex, other hippocampal subregions, and striatum immediately after the run; significant changes remained evident in the hippocampal subregions after a 2-h rest. Long-term exercise increased the densities of c-Fos+ cells in the striatum, followed by the primary somatosensory, primary and secondary motor cortices, hippocampal subregions, hypothalamic nuclei, and lateral periaqueductal gray; significant changes remained evident in the striatum, hippocampal subregions, hypothalamic nuclei, and lateral periaqueductal gray after a 2-h rest. Interestingly, the densities of c-Fos+ cells in the substantia nigra and ventral tegmental area only increased after a 2-h rest after the run in the long-term exercise group. The densities of c-Fos+ cells were positively correlated with the expression of brain-derived neurotrophic factor in the selected brain regions. In conclusion, both acute and long-term treadmill running at mild intensity induce c-Fos expression in the limbic system and movement-associated cortical and subcortical regions, with long-term exercise involving more brain regions (i.e., hypothalamus and periaqueductal gray) and longer lasting effects.

AB - Acute and long-term exercise differentially affect brain functions. It has been suggested that neuronal activation is one of the mechanisms for exercise-induced enhancement of brain functions. However, the differential effects of acute and long-term exercise on the spatial and temporal profiles of neuronal activation in the brain have been scarcely explored. In this study, we profiled the expression of c-Fos, a marker of neuronal activation, in selected 26 brain regions of 2-month-old male C57/B6 mice that received either a single bout of treadmill running (acute exercise) or a 4-week treadmill training (long-term exercise) at the same duration (1 h/day) and intensity (10 m/min). The c-Fos expression was determined before, immediately after, and 2 h after the run. The results showed that acute exercise increased the densities of c-Fos+ cells in the ventral hippocampal CA1 region, followed by (in a high to low order) the primary somatosensory cortex, other hippocampal subregions, and striatum immediately after the run; significant changes remained evident in the hippocampal subregions after a 2-h rest. Long-term exercise increased the densities of c-Fos+ cells in the striatum, followed by the primary somatosensory, primary and secondary motor cortices, hippocampal subregions, hypothalamic nuclei, and lateral periaqueductal gray; significant changes remained evident in the striatum, hippocampal subregions, hypothalamic nuclei, and lateral periaqueductal gray after a 2-h rest. Interestingly, the densities of c-Fos+ cells in the substantia nigra and ventral tegmental area only increased after a 2-h rest after the run in the long-term exercise group. The densities of c-Fos+ cells were positively correlated with the expression of brain-derived neurotrophic factor in the selected brain regions. In conclusion, both acute and long-term treadmill running at mild intensity induce c-Fos expression in the limbic system and movement-associated cortical and subcortical regions, with long-term exercise involving more brain regions (i.e., hypothalamus and periaqueductal gray) and longer lasting effects.

UR - http://www.scopus.com/inward/record.url?scp=85069701559&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85069701559&partnerID=8YFLogxK

U2 - 10.1007/s00429-019-01926-5

DO - 10.1007/s00429-019-01926-5

M3 - Article

C2 - 31352506

AN - SCOPUS:85069701559

VL - 224

SP - 2677

EP - 2689

JO - Brain Structure and Function

JF - Brain Structure and Function

SN - 1863-2653

IS - 8

ER -