Addressing multicollinearity in semiconductor manufacturing

Yu Ching Chang, Christina Mastrangelo

研究成果: Article同行評審

9 引文 斯高帕斯(Scopus)


When building prediction models in the semiconductor environment, many variables, such as input/output variables, have causal relationships which may lead to multicollinearity. There are several approaches to address multicollinearity: variable elimination, orthogonal transformation, and adoption of biased estimates. This paper reviews these methods with respect to an application that has a structure more complex than simple pairwise correlations. We also present two algorithmic variable elimination approaches and compare their performance with that of the existing principal component regression and ridge regression approaches in terms of residual mean square and R2.

頁(從 - 到)843-854
期刊Quality and Reliability Engineering International
出版狀態Published - 2011 十月

All Science Journal Classification (ASJC) codes

  • Safety, Risk, Reliability and Quality
  • Management Science and Operations Research

指紋 深入研究「Addressing multicollinearity in semiconductor manufacturing」主題。共同形成了獨特的指紋。