Adsorptive removal of arsenic using a novel akhtenskite coated waste Goethite

Yu Jen Shih, Re Lin Huang, Yao Hui Huang

研究成果: Article同行評審

36 引文 斯高帕斯(Scopus)


In recent years, the synthesis of manganese-based mixed oxides that can promote both the oxidation and the adsorption of arsenic has aroused great interest among those who are involved in management of arsenic wastewater. In this work, waste goethite, BT9 (α-FeOOH, 0.25-1 mm, 232 m2 g-1), which was recycled from industrial fluidized-bed Fenton equipment, was combined with akhtenskite (ε-MnO2), called MnBT9, for use in the adsorptive removal of arsenic (As(III) and As(V)) from solution. MnBT9 was prepared using a fluidized-bed reactor (FBR) in which ε-MnO2, formed by oxidizing Mn2 with sodium hypochlorite (NaOCl), was uniformly deposited onto BT9 support particles. Langmuir isotherms suggested that BT9 effectively adsorbed As(V) (28.25 mg g-1) but was mostly ineffective in adsorbing As(III) (8.03 mg g1). Nevertheless, the deposition of MnO2 on MnBT9 markedly increased its capacity to adsorb As(III) (34.36 mg g-1) without significantly influencing the retention of As(V) by the BT9 substrate. Kedge XANES (X-ray absorption near edge structure) analysis revealed that As(III) was totally oxidized to As(V) on MnBT9. A pseudo-second-order model was used to elucidate the kinetics of adsorption; at pH 3.5, MnBT9 removed As(III) at a higher rate than it removed As(V), proving that oxidation was a limiting step of arsenic removal when the BT9 substrate dominated the adsorption of As(V) in either its native form or formed by the oxidation of As(III).

頁(從 - 到)897-905
期刊Journal of Cleaner Production
出版狀態Published - 2015

All Science Journal Classification (ASJC) codes

  • 可再生能源、永續發展與環境
  • 環境科學 (全部)
  • 策略與管理
  • 工業與製造工程


深入研究「Adsorptive removal of arsenic using a novel akhtenskite coated waste Goethite」主題。共同形成了獨特的指紋。