TY - JOUR
T1 - Aerobic-strength exercise improves metabolism and clinical state in Parkinson's disease patients
AU - Krumpolec, Patrik
AU - Vallova, Silvia
AU - Slobodova, Lucia
AU - Tirpakova, Veronika
AU - Vajda, Matej
AU - Schon, Martin
AU - Klepochova, Radka
AU - Janakova, Zuzana
AU - Straka, Igor
AU - Sutovsky, Stanislav
AU - Turcani, Peter
AU - Cvecka, Jan
AU - Valkovic, Ladislav
AU - Tsai, Chia Liang
AU - Krssak, Martin
AU - Valkovic, Peter
AU - Sedliak, Milan
AU - Ukropcova, Barbara
AU - Ukropec, Jozef
N1 - Funding Information:
The authors wish to thank Denisa Maderova, Marjeta Tusek-Jelenc, Ivica Just-Kukurova, Lucia Pilkova, Lucia Kukulova, Pavel Blazicek, Katarina Dudova, Marek Vician, Elena Hessova, Ivan Jelok, and Lubica Gogova for their highly valued technical help, as well as all the study volunteers for their enthusiasm for exercise and the willingness to support our research. This work was supported by the SAS-NSC Joint Research Cooperation grant 2013/17 (BU), the Grant Agency of the Slovak Academy of Sciences-VEGA 2/0191/15 (BU) and 2/0096/17 Slovak Research and Development Agency grant SRDA 15/0253 (BU, JU, PT), Anniversary Fund of the Austrian National Bank #15455 (LV) and NSP-SR (PK).
Publisher Copyright:
© 2017 Krumpolec, Vallova, Slobodova, Tirpakova, Vajda, Schon, Klepochova, Janakova, Straka, Sutovsky, Turcani, Cvecka, Valkovic, Tsai, Krssak, Valkovic, Sedliak, Ukropcova and Ukropec.
PY - 2017/12/22
Y1 - 2017/12/22
N2 - Regular exercise ameliorates motor symptoms in Parkinson's disease (PD). Here, we aimed to provide evidence that exercise brings additional benefits to the whole-body metabolism and skeletal muscle molecular and functional characteristics, which might help to explain exercise-induced improvements in the clinical state. 3-months supervised endurance/strength training was performed in early/mid-stage PD patients and age/gender-matched individuals (n = 11/11). The effects of exercise on resting energy expenditure (REE), glucose metabolism, adiposity, and muscle energy metabolism (31P-MRS) were evaluated and compared to non-exercising PD patients. Two muscle biopsies were taken to determine intervention-induced changes in fiber type, mitochondrial content, and expression of genes related to muscle energy metabolism, as well as proliferative and regenerative capacity. Exercise improved the clinical disability score (MDS-UPDRS), bradykinesia, balance, walking speed, REE, and glucose metabolism and increased muscle expression of energy sensors (AMPK). However, the exercise-induced increase in muscle mass/strength, mitochondrial content, type II fiber size, and postexercise phosphocreatine (PCr) recovery (31P-MRS) were found only in controls. Nevertheless, MDS-UPDRS was associated with muscle AMPK and mechano-growth factor (MGF) expression. Improvements in fasting glycemia were positively associated with muscle function and the expression of Sirt1 and Cox7a1, and the parameters of fitness/strength were positively associated with the expression of MyHC2, MyHC7, and MGF. Moreover, reduced bradykinesia was associated with better muscle metabolism (maximal oxidative capacity and postexercise PCr recovery; 31P-MRS). Exercise training improved the clinical state in early/mid-stage Parkinson's disease patients, including motor functions and whole-body metabolism. Although the adaptive response to exercise in PD was different from that of controls, exercise-induced improvements in the PD clinical state were associated with specific adaptive changes in muscle functional, metabolic, and molecular characteristics.
AB - Regular exercise ameliorates motor symptoms in Parkinson's disease (PD). Here, we aimed to provide evidence that exercise brings additional benefits to the whole-body metabolism and skeletal muscle molecular and functional characteristics, which might help to explain exercise-induced improvements in the clinical state. 3-months supervised endurance/strength training was performed in early/mid-stage PD patients and age/gender-matched individuals (n = 11/11). The effects of exercise on resting energy expenditure (REE), glucose metabolism, adiposity, and muscle energy metabolism (31P-MRS) were evaluated and compared to non-exercising PD patients. Two muscle biopsies were taken to determine intervention-induced changes in fiber type, mitochondrial content, and expression of genes related to muscle energy metabolism, as well as proliferative and regenerative capacity. Exercise improved the clinical disability score (MDS-UPDRS), bradykinesia, balance, walking speed, REE, and glucose metabolism and increased muscle expression of energy sensors (AMPK). However, the exercise-induced increase in muscle mass/strength, mitochondrial content, type II fiber size, and postexercise phosphocreatine (PCr) recovery (31P-MRS) were found only in controls. Nevertheless, MDS-UPDRS was associated with muscle AMPK and mechano-growth factor (MGF) expression. Improvements in fasting glycemia were positively associated with muscle function and the expression of Sirt1 and Cox7a1, and the parameters of fitness/strength were positively associated with the expression of MyHC2, MyHC7, and MGF. Moreover, reduced bradykinesia was associated with better muscle metabolism (maximal oxidative capacity and postexercise PCr recovery; 31P-MRS). Exercise training improved the clinical state in early/mid-stage Parkinson's disease patients, including motor functions and whole-body metabolism. Although the adaptive response to exercise in PD was different from that of controls, exercise-induced improvements in the PD clinical state were associated with specific adaptive changes in muscle functional, metabolic, and molecular characteristics.
UR - http://www.scopus.com/inward/record.url?scp=85039559538&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85039559538&partnerID=8YFLogxK
U2 - 10.3389/fneur.2017.00698
DO - 10.3389/fneur.2017.00698
M3 - Article
AN - SCOPUS:85039559538
SN - 1664-2295
VL - 8
JO - Frontiers in Neurology
JF - Frontiers in Neurology
IS - DEC
M1 - 698
ER -