TY - JOUR
T1 - Amelioration of experimental tendinopathy by lentiviral CD44 gene therapy targeting senescence-associated secretory phenotypes
AU - Chen, Shih Yao
AU - Jou, I. Ming
AU - Ko, Po Yen
AU - Hsu, Kai Lan
AU - Su, Wei Ren
AU - Kuo, Li Chieh
AU - Lee, Pei Yuan
AU - Wu, Chao Liang
AU - Wu, Po Ting
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022/9/8
Y1 - 2022/9/8
N2 - CD44 exerts anti-senescence effects in many disease models. We examined senescence in tendinopathy and the effect of CD44 on senescence-associated secretory phenotypes (SASPs). Senescent markers were determined in human tendinopathic long head of bicep (LHB) and normal hamstring tendons. CD44 gene transfer in rat tendinopathic tenocytes stimulated with interleukin (IL)-1β and a rat Achilles tendinopathy model were performed using lentiviral vectors. Expression levels of p53, p21, and p16 and senescence-associated β-galactosidase (SA-β-gal) activity were positively correlated with the severity of human tendinopathy and were higher in rat and human tendinopathic tenocytes than in normal controls. CD44 overexpressed tenocyte transfectants exhibited reduced levels of IL-6, matrix metalloproteinases (MMPs), cyclooxygenase (COX)-2, p53, p21, p16, SA-β-gal, and phospho-nuclear factor (NF)-κB, whereas their collagen type I alpha 1 (COL1A1) and tenomodulin (tnmd) levels were increased when compared with control transfectants under IL-1β-stimulated conditions. In the animal model, CD44 overexpression lowered the ultrasound and histology scores and expression levels of the senescent and SASP markers COX-2 and phospho-NF-κB. Bromodeoxyuridine (BrdU)- and tnmd-positive cell numbers were increased in the LVCD44-transduced tendinopathic tendons. Senescence is positively correlated with tendinopathic severity, and CD44 overexpression may protect the tendinopathic tendons from SASPs via anti-inflammation and maintenance of extracellular matrix homeostasis.
AB - CD44 exerts anti-senescence effects in many disease models. We examined senescence in tendinopathy and the effect of CD44 on senescence-associated secretory phenotypes (SASPs). Senescent markers were determined in human tendinopathic long head of bicep (LHB) and normal hamstring tendons. CD44 gene transfer in rat tendinopathic tenocytes stimulated with interleukin (IL)-1β and a rat Achilles tendinopathy model were performed using lentiviral vectors. Expression levels of p53, p21, and p16 and senescence-associated β-galactosidase (SA-β-gal) activity were positively correlated with the severity of human tendinopathy and were higher in rat and human tendinopathic tenocytes than in normal controls. CD44 overexpressed tenocyte transfectants exhibited reduced levels of IL-6, matrix metalloproteinases (MMPs), cyclooxygenase (COX)-2, p53, p21, p16, SA-β-gal, and phospho-nuclear factor (NF)-κB, whereas their collagen type I alpha 1 (COL1A1) and tenomodulin (tnmd) levels were increased when compared with control transfectants under IL-1β-stimulated conditions. In the animal model, CD44 overexpression lowered the ultrasound and histology scores and expression levels of the senescent and SASP markers COX-2 and phospho-NF-κB. Bromodeoxyuridine (BrdU)- and tnmd-positive cell numbers were increased in the LVCD44-transduced tendinopathic tendons. Senescence is positively correlated with tendinopathic severity, and CD44 overexpression may protect the tendinopathic tendons from SASPs via anti-inflammation and maintenance of extracellular matrix homeostasis.
UR - http://www.scopus.com/inward/record.url?scp=85133454073&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85133454073&partnerID=8YFLogxK
U2 - 10.1016/j.omtm.2022.06.006
DO - 10.1016/j.omtm.2022.06.006
M3 - Article
AN - SCOPUS:85133454073
SN - 2329-0501
VL - 26
SP - 157
EP - 168
JO - Molecular Therapy Methods and Clinical Development
JF - Molecular Therapy Methods and Clinical Development
ER -