An analytical solution for transport of oxygen in cathode gas diffusion layer of PEMFC

C. R. Tsai, Falin Chen, A. C. Ruo, Min Hsing Chang, Hsin Sen Chu, C. Y. Soong, W. M. Yan, C. H. Cheng

研究成果: Article同行評審

2 引文 斯高帕斯(Scopus)

摘要

A two-dimensional theoretical model is developed in this study to simulate the transport phenomena of oxygen in cathode gas diffusion layer (GDL) of proton exchange membrane fuel cell (PEMFC). An analytical solution is then obtained accordingly to characterize the effects of GDL on cell performance. It is found that the concentration flux of oxygen across the GDL is primarily dominated by the thickness and porosity of GDL. For a thicker GDL, the diffusion resistance increases and thus lowers the cell performance especially under high current density condition. On the other hand, an increase of porosity will enhance the transport of oxygen and result in significant improvement of cell performance. The influences of system parameters including the temperature, channel height, inlet velocity, and inlet pressure on the diffusion of oxygen in GDL are also examined systematically. Results provide insights into the characteristics of oxygen diffusion in GDL and benefit the optimal design of PEMFC.

原文English
頁(從 - 到)2179-2192
頁數14
期刊International Journal of Hydrogen Energy
31
發行號15
DOIs
出版狀態Published - 2006 十二月

All Science Journal Classification (ASJC) codes

  • 可再生能源、永續發展與環境
  • 燃料技術
  • 凝聚態物理學
  • 能源工程與電力技術

指紋

深入研究「An analytical solution for transport of oxygen in cathode gas diffusion layer of PEMFC」主題。共同形成了獨特的指紋。

引用此