TY - JOUR
T1 - An efficient mechanism for processing similarity search queries in sensor networks
AU - Chung, Yu Chi
AU - Su, I. Fang
AU - Lee, Chiang
PY - 2011/1/15
Y1 - 2011/1/15
N2 - The similarity search problem has received considerable attention in database research community. In sensor network applications, this problem is even more important due to the imprecision of the sensor hardware, and variation of environmental parameters. Traditional similarity search mechanisms are both improper and inefficient for these highly energy-constrained sensors. A difficulty is that it is hard to predict which sensor has the most similar (or closest) data item such that many or even all sensors need to send their data to the query node for further comparison. In this paper, we propose a similarity search algorithm (SSA), which is a novel framework based on the concept of Hilbert curve over a data-centric storage structure, for efficiently processing similarity search queries in sensor networks. SSA successfully avoids the need of collecting data from all sensors in the network in searching for the most similar data item. The performance study reveals that this mechanism is highly efficient and significantly outperforms previous approaches in processing similarity search queries.
AB - The similarity search problem has received considerable attention in database research community. In sensor network applications, this problem is even more important due to the imprecision of the sensor hardware, and variation of environmental parameters. Traditional similarity search mechanisms are both improper and inefficient for these highly energy-constrained sensors. A difficulty is that it is hard to predict which sensor has the most similar (or closest) data item such that many or even all sensors need to send their data to the query node for further comparison. In this paper, we propose a similarity search algorithm (SSA), which is a novel framework based on the concept of Hilbert curve over a data-centric storage structure, for efficiently processing similarity search queries in sensor networks. SSA successfully avoids the need of collecting data from all sensors in the network in searching for the most similar data item. The performance study reveals that this mechanism is highly efficient and significantly outperforms previous approaches in processing similarity search queries.
UR - http://www.scopus.com/inward/record.url?scp=78049346470&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78049346470&partnerID=8YFLogxK
U2 - 10.1016/j.ins.2010.08.031
DO - 10.1016/j.ins.2010.08.031
M3 - Article
AN - SCOPUS:78049346470
SN - 0020-0255
VL - 181
SP - 284
EP - 307
JO - Information Sciences
JF - Information Sciences
IS - 2
ER -