An experimental analysis on a Stirling-engine-driven micro power-generation system integrated with a flat-flame burner powered by dimethyl ether fuel mixed with ammonia

Wen-Lih Chen, Gaetano M.D. Currao, Chih-Yung Wu, Bing Ying Tsai, Shang Chih Lin, Cheng Jun Li

研究成果: Article同行評審

摘要

The benefits of employing ammonia for power generation were experimentally quantified through the development of an electric generator system. This system consisted of a flat-flame burner, a Stirling engine, an AC generator, a charge controller, batteries, and some electric appliances. The fuel employed throughout this study was a mixture of dimethyl ether and ammonia. The system performance was quantified through electric power output, thermal-to-electric efficiency of the system, and multiple emission indices, which facilitated the estimation of combustion efficiency. Under the condition of a value of ammonia concentration of 10 % and heat input of 2000 W, the system generated 31.1 W of electric power. As the ammonia concentration increased to 40 %, the CO2 emissions were decreased by approximately 42 % at the cost of a minor reduction in electric power output of 4 %. The combustion efficiency of the flat-flame burner was between 98.4 and 99.1 %, and the thermal-to-electric efficiency of the system was between 1.45 and 1.7 %. The results demonstrated that ammonia has the potential to phase out carbon-rich fuel (either fossil fuel or sustainable fuel such as dimethyl ether), thus mitigating the CO2 emission that worsens the global warming problem.

原文English
文章編號134224
期刊Energy
314
DOIs
出版狀態Published - 2025 1月 1

All Science Journal Classification (ASJC) codes

  • 土木與結構工程
  • 建模與模擬
  • 可再生能源、永續發展與環境
  • 建築與營造
  • 燃料技術
  • 能源工程與電力技術
  • 污染
  • 機械工業
  • 一般能源
  • 管理、監督、政策法律
  • 工業與製造工程
  • 電氣與電子工程

引用此