An Improved Quantum-Inspired Evolutionary Algorithm for Data Clustering

Yan Rong Chen, Chun Wei Tsai, Ming Chao Chiang, Chu Sing Yang

研究成果: Conference contribution

3 引文 斯高帕斯(Scopus)

摘要

An improved quantum-inspired evolutionary algorithm (iQEA) is presented in this paper to improve the clustering result of a data clustering problem. Like the other QEA-based algorithms, the iQEA uses Q-bits to denote the state of a quantum particle and Q-gate as an evolutionary operator to guide the search directions. Unlike the fixed rotation degree of QEAs, the rotation degree of iQEA will be changed at different iterations. Experimental results show that the iQEA is able to find a better result than all the other metaheuristic algorithms compared in this paper in terms of quality.

原文English
主出版物標題Proceedings - 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018
發行者Institute of Electrical and Electronics Engineers Inc.
頁面3411-3416
頁數6
ISBN(電子)9781538666500
DOIs
出版狀態Published - 2019 1月 16
事件2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018 - Miyazaki, Japan
持續時間: 2018 10月 72018 10月 10

出版系列

名字Proceedings - 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018

Conference

Conference2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018
國家/地區Japan
城市Miyazaki
期間18-10-0718-10-10

All Science Journal Classification (ASJC) codes

  • 資訊系統
  • 資訊系統與管理
  • 健康資訊學
  • 人工智慧
  • 電腦網路與通信
  • 人機介面

指紋

深入研究「An Improved Quantum-Inspired Evolutionary Algorithm for Data Clustering」主題。共同形成了獨特的指紋。

引用此