An innovative running wheel-based mechanism for improved rat training performance

Chi Chun Chen, Chin Lung Yang, Ching Ping Chang

研究成果: Article同行評審

3 引文 斯高帕斯(Scopus)

摘要

This study presents an animal mobility system, equipped with a positioning running wheel (PRW), as a way to quantify the efficacy of an exercise activity for reducing the severity of the effects of the stroke in rats. This system provides more effective animal exercise training than commercially available systems such as treadmills and motorized running wheels (MRWs). In contrast to an MRW that can only achieve speeds below 20 m/min, rats are permitted to run at a stable speed of 30 m/min on a more spacious and high-density rubber running track supported by a 15 cm wide acrylic wheel with a diameter of 55 cm in this work. Using a predefined adaptive acceleration curve, the system not only reduces the operator error but also trains the rats to run persistently until a specified intensity is reached. As a way to evaluate the exercise effectiveness, real-time position of a rat is detected by four pairs of infrared sensors deployed on the running wheel. Once an adaptive acceleration curve is initiated using a microcontroller, the data obtained by the infrared sensors are automatically recorded and analyzed in a computer. For comparison purposes, 3 week training is conducted on rats using a treadmill, an MRW and a PRW. After surgically inducing middle cerebral artery occlusion (MCAo), modified neurological severity scores (mNSS) and an inclined plane test were conducted to assess the neurological damages to the rats. PRW is experimentally validated as the most effective among such animal mobility systems. Furthermore, an exercise effectiveness measure, based on rat position analysis, showed that there is a high negative correlation between the effective exercise and the infarct volume, and can be employed to quantify a rat training in any type of brain damage reduction experiments.

原文English
文章編號e54354
期刊Journal of Visualized Experiments
2016
發行號115
DOIs
出版狀態Published - 2016 9月 19

All Science Journal Classification (ASJC) codes

  • 神經科學 (全部)
  • 化學工程 (全部)
  • 生物化學、遺傳與分子生物學 (全部)
  • 免疫學與微生物學 (全部)

指紋

深入研究「An innovative running wheel-based mechanism for improved rat training performance」主題。共同形成了獨特的指紋。

引用此