An integral method for parameter identification of a nonlinear robot subject to quantization error

Yang Rui Li, Chao Chung Peng, Jer Nan Juang

研究成果: Article同行評審

1 引文 斯高帕斯(Scopus)

摘要

This paper focuses on the parameter identification of a class of nonlinear mechanical dynamic systems subject to feedback quantization errors. A second-order integral method for the parameter identification of a nonlinear two-degrees-of-freedom robotic manipulator is studied. To obtain accurate parameter estimates, an optimal excitation trajectory subject to state constraints is proposed. The designated excitation trajectory is able to minimize estimation uncertainties, providing the controlled system trajectory reaches the desired optimal excitation trajectory. Moreover, for most of the nonlinear robotic systems, the output measurements are acquired from the encoders subject to apparent quantization error. Directly differentiating the position to estimate the velocity and acceleration trajectories is unrealistic and unsuitable due to the amplified quantization errors will cause considerable estimation errors. Instead, the finite Fourier series is introduced to perform optimal estimation of the position, velocity, and acceleration histories to capture the dominant frequencies of the system response. A weighted least-squares solution is further proposed to improve parameter identification precision. The comparative studies reveal that the integral method has superior parameter estimation performance than the direct difference model and the filtered regression model in the existing literature. Experimental simulations illustrate the effectiveness of the presented method.

原文English
頁(從 - 到)22419-22441
頁數23
期刊Nonlinear Dynamics
111
發行號24
DOIs
出版狀態Published - 2023 12月

All Science Journal Classification (ASJC) codes

  • 控制與系統工程
  • 航空工程
  • 海洋工程
  • 機械工業
  • 電氣與電子工程
  • 應用數學

指紋

深入研究「An integral method for parameter identification of a nonlinear robot subject to quantization error」主題。共同形成了獨特的指紋。

引用此