An integrated microfluidic system for fast, automatic detection of C-reactive protein

Wen Bin Lee, Yin He Chen, Hsin I. Lin, Shu Chu Shiesh, Gwo Bin Lee

研究成果: Article同行評審

68 引文 斯高帕斯(Scopus)


C-reactive protein (CRP) is a well-known inflammation marker in human beings. This study reports a new microfluidic system for fast, automatic detection of CRP. It contains pneumatic micropumps, a vortex-type micromixer, a pneumatic micro-injector and several microvalves to automatically perform the entire protocol for CRP detection. This includes sample/reagent transportation, incubation between the target CRP and a CRP-specific aptamer, washing processes, and the chemiluminescence development process. In addition, the chemiluminescence signal is measured by using a custom-made optical system which consists of a photomultiplier tube, a portable air compressor and eight electronic magnet valves to quantify the concentration of CRP. When compared to previous works, not only can this new microfluidic system automatically perform the entire process via a new integrated micro-injector and new micropumps, but a new CRP-specific DNA aptamer with a higher affinity and specificity is also used for CRP measurement. Experimental data show that the developed system can automatically complete the entire protocol within 30 min with a detection limit of 0.0125 mg/L, which is superior to previous published results. Moreover, this study also measures CRP concentration from clinical samples to verify the performance of the developed microfluidic system. The results indicate that the measured CRP concentrations from human serums are consistent with those using a benchtop system. The developed system can also detect CRP concentrations from human whole blood without any external sample pretreatment process. This microfluidic system may be promising for point-of-care applications for CRP detection in the future.

頁(從 - 到)710-721
期刊Sensors and Actuators, B: Chemical
出版狀態Published - 2011 十月 20

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Electrical and Electronic Engineering
  • Materials Chemistry

指紋 深入研究「An integrated microfluidic system for fast, automatic detection of C-reactive protein」主題。共同形成了獨特的指紋。