Analysis of dynamic light scattering data with sparse Bayesian learning for the study of cataractogenesis

Su Long Nyeo, Rafat R. Ansari

研究成果: Conference contribution

摘要

Dynamic light scattering (DLS) experimental data is statistical in nature and therefore requires a probabilistic analysis tool. The probabilistic sparse Bayesian learning (SBL) algorithm is introduced for analyzing DLS data from ocular lenses. The algorithm is used to reconstruct the most-relevant size distribution of the α-crystallins and their aggregates. The performance of the algorithm is evaluated by analyzing simulated data from a known distribution and experimental DLS data from the ocular lenses of several mammals.

原文English
主出版物標題Ophthalmic Technologies XX
DOIs
出版狀態Published - 2010
事件Ophthalmic Technologies XX - San Francisco, CA, United States
持續時間: 2010 1月 232010 1月 25

出版系列

名字Progress in Biomedical Optics and Imaging - Proceedings of SPIE
7550
ISSN(列印)1605-7422

Other

OtherOphthalmic Technologies XX
國家/地區United States
城市San Francisco, CA
期間10-01-2310-01-25

All Science Journal Classification (ASJC) codes

  • 電子、光磁材料
  • 原子與分子物理與光學
  • 放射學、核子醫學和影像學
  • 生物材料

指紋

深入研究「Analysis of dynamic light scattering data with sparse Bayesian learning for the study of cataractogenesis」主題。共同形成了獨特的指紋。

引用此