Analytic IMU Preintegration That Associates Uncertainty on Matrix Lie Groups for Consistent Visual-Inertial Navigation Systems

Shu Hua Tsao, Shau Shiun Jan

研究成果: Article同行評審

摘要

We present a novel right-invariant inertial measurement unit (RI IMU) preintegration model and apply it to an optimization-based visual-inertial navigation system (VINS). We find that the unobservable subspace of the proposed estimator was only affected by landmarks from the standpoint of an observability analysis. We highlight that the proposed VINS utilizing the RI IMU preintegration model is consistent with Jacobians evaluated using the most recent estimates of extended poses. Monte Carlo simulations and real-world experiments using the 4Seasons data sets validated our analysis and demonstrated the effectiveness of the proposed VINS by comparing its performance with VINS using different IMU preintegration models and other state-of-the-art VINS.

原文English
頁(從 - 到)3819-3826
頁數8
期刊IEEE Robotics and Automation Letters
8
發行號6
DOIs
出版狀態Published - 2023 6月 1

All Science Journal Classification (ASJC) codes

  • 控制與系統工程
  • 生物醫學工程
  • 人機介面
  • 機械工業
  • 電腦視覺和模式識別
  • 電腦科學應用
  • 控制和優化
  • 人工智慧

指紋

深入研究「Analytic IMU Preintegration That Associates Uncertainty on Matrix Lie Groups for Consistent Visual-Inertial Navigation Systems」主題。共同形成了獨特的指紋。

引用此