Analytical and numerical modeling methods for electrochemical impedance analysis of single cells on coplanar electrodes

Sung Lin Tsai, Min Haw Wang, Ming Kun Chen, Ling Sheng Jang

研究成果: Article同行評審

19 引文 斯高帕斯(Scopus)


Impedance measurements provide basic electrical properties and are used to analyze the characteristics of electrochemical materials for biomedical applications. The extracellular fluid (ECF) in microfluidic devices greatly affects the accuracy of impedance measurements of cells. When a single cell is placed in large amounts of ECF, the electric current mostly passes through the ECF, not the cell. Hence, this work presents a modeling method that is demonstrated in numerical and analytical solutions for eliminating the effect of ECF in coplanar impedance sensors. The proposed modeling method uses fundamental formulas of circuits that include the electrical parameters of the ECF, cytoplasm, and cell membrane. Equivalent circuit models for the coplanar impedance sensor are established to simulate the impedance as well as the measured ones for excitation frequencies in the range of 11-101kHz. According to the calculation result using the proposed modeling method, the cytoplasm resistance, membrane capacitance, medium resistance, and medium capacitance of HeLa (human cervix adenocarcinoma) cell are 13.5kΩ, 122.6pF, 27.9kΩ, and 337.7pF, respectively. Moreover, the electric current distribution in the coplanar impedance sensor is investigated using finite element method (FEM) simulation software. The variation in the impedance during measurements with the simultaneous application of an alternating-current (AC) voltage amplitude of 0.4Vpp in the fluid volume range of 9-144μL is also studied.

頁(從 - 到)389-398
出版狀態Published - 2014 2月

All Science Journal Classification (ASJC) codes

  • 分析化學
  • 電化學


深入研究「Analytical and numerical modeling methods for electrochemical impedance analysis of single cells on coplanar electrodes」主題。共同形成了獨特的指紋。