Application of genetic algorithm and fuzzy gantt chart to project scheduling with resource constraints

Yu Chuan Liu, Hong Mei Gao, Shih Ming Yang, Chun Yung Chuang

研究成果: Conference contribution

3 引文 斯高帕斯(Scopus)

摘要

Project scheduling with resource constraints is one of the most challenging optimization problems because of the complexity in estimating the resource requirement. This work aims at the application of fuzzy Gantt chart (FGC) and genetic algorithm (GA) to calculate optimal activity in project scheduling. Activity durations are considered adjustable for the optimal resource assignment under the constraints. GA determines not only the activity priority but also the activity duration within resource constraints. Numerical results of an example show that this application can effectively reduce the maximum resource input from 94 to 40 men with similar project makespan.

原文English
主出版物標題Intelligent Computing Methodologies - 10th International Conference, ICIC 2014, Proceedings
發行者Springer Verlag
頁面241-252
頁數12
ISBN(列印)9783319093383
DOIs
出版狀態Published - 2014 一月 1
事件10th International Conference on Intelligent Computing, ICIC 2014 - Taiyuan, China
持續時間: 2014 八月 32014 八月 6

出版系列

名字Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
8589 LNAI
ISSN(列印)0302-9743
ISSN(電子)1611-3349

Other

Other10th International Conference on Intelligent Computing, ICIC 2014
國家China
城市Taiyuan
期間14-08-0314-08-06

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

指紋 深入研究「Application of genetic algorithm and fuzzy gantt chart to project scheduling with resource constraints」主題。共同形成了獨特的指紋。

  • 引用此

    Liu, Y. C., Gao, H. M., Yang, S. M., & Chuang, C. Y. (2014). Application of genetic algorithm and fuzzy gantt chart to project scheduling with resource constraints. 於 Intelligent Computing Methodologies - 10th International Conference, ICIC 2014, Proceedings (頁 241-252). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 卷 8589 LNAI). Springer Verlag. https://doi.org/10.1007/978-3-319-09339-0_24