TY - JOUR
T1 - Application of two-dimensional fractional-order convolution and bounding box pixel analysis for rapid screening of pleural effusion
AU - Lin, Chia Hung
AU - Kan, Chung Dann
AU - Chen, Wei Ling
AU - Huang, Ping Tzan
N1 - Publisher Copyright:
© 2019 - IOS Press and the authors. All rights reserved.
PY - 2019
Y1 - 2019
N2 - Pleural effusion is a pathologic symptom in which there is accumulation of body fluids around the lungs. A chest radiograph is a rapid examination technique and does not require complex setup for making a preliminary diagnosis of lung and heart diseases. In radiographic visualization, the symptom patterns appear as light or dark areas in the lung cavity. Computer-aided diagnosis is an automatic manner that can rapidly highlight the object region by preanalyzing medical images. It can improve the problems of manual inspection and allow diagnosis in remote medical facilities. Based on the ratios of lung anatomy, the automatic screening manner based on pattern recognition can be viewed as pixel value detection in the bilateral lung cavities. In this study, a fractional-order convolution (FOC) process is used to enhance the original image for an accurate extrapolation of the desired object in an image. The specific object image feature can be improved, and an accurate quantification of the pleural effusion region can be obtained using the suitable ranges of fractional-order parameters. Based on the boundaries of homogeneous regions, the pixel ratios of the lung anatomy between normal and abnormal conditions can be computed. The pleural effusion sizes and volumes can be rapidly estimated through the number of pixel changes. The experimental results reveal that the feature maps are similar and stable on image enhancement and segmentation with two fractional-order enhancement masks, as fractional-order v = 0.05 to 0.20 for mask 1# and v = 0.80 to 0.95 for mask 2#, respectively. The results also demonstrate the feasibility of the study on combining two-dimensional image FOC-process and bounding box pixel analysis to estimate the moderate and large effusion sizes from 500-2,000 mL.
AB - Pleural effusion is a pathologic symptom in which there is accumulation of body fluids around the lungs. A chest radiograph is a rapid examination technique and does not require complex setup for making a preliminary diagnosis of lung and heart diseases. In radiographic visualization, the symptom patterns appear as light or dark areas in the lung cavity. Computer-aided diagnosis is an automatic manner that can rapidly highlight the object region by preanalyzing medical images. It can improve the problems of manual inspection and allow diagnosis in remote medical facilities. Based on the ratios of lung anatomy, the automatic screening manner based on pattern recognition can be viewed as pixel value detection in the bilateral lung cavities. In this study, a fractional-order convolution (FOC) process is used to enhance the original image for an accurate extrapolation of the desired object in an image. The specific object image feature can be improved, and an accurate quantification of the pleural effusion region can be obtained using the suitable ranges of fractional-order parameters. Based on the boundaries of homogeneous regions, the pixel ratios of the lung anatomy between normal and abnormal conditions can be computed. The pleural effusion sizes and volumes can be rapidly estimated through the number of pixel changes. The experimental results reveal that the feature maps are similar and stable on image enhancement and segmentation with two fractional-order enhancement masks, as fractional-order v = 0.05 to 0.20 for mask 1# and v = 0.80 to 0.95 for mask 2#, respectively. The results also demonstrate the feasibility of the study on combining two-dimensional image FOC-process and bounding box pixel analysis to estimate the moderate and large effusion sizes from 500-2,000 mL.
UR - http://www.scopus.com/inward/record.url?scp=85068548898&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85068548898&partnerID=8YFLogxK
U2 - 10.3233/XST-180473
DO - 10.3233/XST-180473
M3 - Article
C2 - 30958323
AN - SCOPUS:85068548898
SN - 0895-3996
VL - 27
SP - 517
EP - 535
JO - Journal of X-Ray Science and Technology
JF - Journal of X-Ray Science and Technology
IS - 3
ER -