Attention-based response generation using parallel double q-learning for dialog policy decision in a conversational system

Ming Hsiang Su, Chung Hsien Wu, Liang Yu Chen

研究成果: Article同行評審

13 引文 斯高帕斯(Scopus)


This article proposes an approach to response generation using a Parallel Double Q-learning algorithm for dialog policy decision in a conversational system. First, a new semantic representation of the user's input sentence is presented by using the CKIP parser to derive the semantic dependency sequence of the input sentence. Then, a Gated Recurrent Unit-based Autoencoder is used to obtain the user's turn representation as well as context representation. A Parallel Double Q-learning algorithm with a Deep Neural Network (PD-DQN), combining two Double DQNs in parallel for the contextual and semantic information in the user's message, respectively, are proposed to determine the dialog act. Finally, the user's input and the determined dialog act are fed to an attention-based Transformer model to generate the response template. With the generated response template, the semantic slots are filled with their corresponding values to obtain the final sentence response. This article collects a multi-turn conversation database consisting of 4186 turns in the travel domain and 447 chitchat question-answer pairs as the evaluation corpus. Five-fold cross validation is employed for performance evaluation. Experimental results show that the proposed approach based on semantic dependency for intent detection increases the accuracy by 4.3%. For dialog policy decision, the PD-DQN achieves 87.57% task success rate, which is 13.9% higher than the baseline Double DQN (73.67%). Finally, using the attention-based Transformer for response template generation obtains a Bleu score of 13.6, improved by 1.5 compared to the Sequence-to-Sequence model. In subjective evaluation, both the dialog policy and sentence generation model achieve a higher appropriateness and grammatical correctness scores than the baseline system.

頁(從 - 到)131-143
期刊IEEE/ACM Transactions on Audio Speech and Language Processing
出版狀態Published - 2020

All Science Journal Classification (ASJC) codes

  • 電腦科學(雜項)
  • 聲學與超音波
  • 計算數學
  • 電氣與電子工程


深入研究「Attention-based response generation using parallel double q-learning for dialog policy decision in a conversational system」主題。共同形成了獨特的指紋。