Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy

Ming Fong Tsai, Shih Hui Gilbert Chang, Fong Yu Cheng, Vijayakumar Shanmugam, Yu Sheng Cheng, Chia Hao Su, Chen Sheng Yeh

研究成果: Article同行評審

446 引文 斯高帕斯(Scopus)

摘要

Photothermal cancer therapy using near-infrared (NIR) laser radiation is an emerging treatment. In the NIR region, two biological transparency windows are located in 650-950 nm (first NIR window) and 1000-1350 nm (second NIR window) with optimal tissue transmission obtained from low scattering and energy absorption, thus providing maximum radiation penetration through tissue and minimizing autofluorescence. To date, intensive effort has resulted in the generation of various methods that can be used to shift the absorbance of nanomaterials to the 650-950 nm NIR regions for studying photoinduced therapy. However, NIR light absorbers smaller than 100 nm in the second NIR region have been scant. We report that a Au nanorod (NR) can be designed with a rod-in-shell (rattle-like) structure smaller than 100 nm that is tailored to be responsive to the first and second NIR windows, in which we can perform hyperthermia-based therapy. In vitro performance clearly displays high efficacy in the NIR photothermal destruction of cancer cells, showing large cell-damaged area beyond the laser-irradiated area. This marked phenomenon has made the rod-in-shell structure a promising hyperthermia agent for the in vivo photothermal ablation of solid tumors when activated using a continuous-wave 808 m (first NIR window) or a 1064 nm (second NIR window) diode laser. We tailored the UV-vis-NIR spectrum of the rod-in-shell structure by changing the gap distance between the Au NR core and the AuAg nanoshell, to evaluate the therapeutic effect of using a 1064 nm diode laser. Regarding the first NIR window with the use of an 808 nm diode laser, rod-in-shell particles exhibit a more effective anticancer efficacy in the laser ablation of solid tumors compared to Au NRs.

原文English
頁(從 - 到)5330-5342
頁數13
期刊ACS nano
7
發行號6
DOIs
出版狀態Published - 2013 6月 25

All Science Journal Classification (ASJC) codes

  • 一般材料科學
  • 一般工程
  • 一般物理與天文學

指紋

深入研究「Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy」主題。共同形成了獨特的指紋。

引用此