Axial orientation control of zebrafish larvae using artificial cilia

Chia Yuan Chen, Tsung Chun Chang Chien, Karthick Mani, Hsiang Yu Tsai

研究成果: Article同行評審

9 引文 斯高帕斯(Scopus)

摘要

Zebrafish has been used as an important vertebrate model of genetic screening and new drug development because of excellent characteristics, such as optical transparency, rapid ex vivo growth, and high genetic similarity to humans. Despite these advantages, studies on zebrafish are limited because of the lack of a robust and reliable method to manipulate zebrafish during microinjection and screening, as well as time-lapse imaging. In this work, a new microfluidic concept that utilizes a series of magnetically actuated artificial cilia integrated into a microchannel was employed to control the orientation of zebrafish larvae with a validated axial rotation capability. In contrast to conventional methods, the proposed method enables a highly accurate small-angle (0°–20°) stepwise axial rotation of a larva inside the microchannel with less detrimental effects on larval growth. The hemodynamics in a selected vessel was then imaged during the axial rotation of the tested larva to assist cardiovascular assessment. In addition, the bioactivity of the tested larvae remains stable without short-term negative effects after the imaging. The proposed platform, along with the provided analytical paradigm, can facilitate future zebrafish screening via microfluidics in the pharmaceutical industry.

原文English
文章編號12
頁(從 - 到)1-9
頁數9
期刊Microfluidics and Nanofluidics
20
發行號1
DOIs
出版狀態Published - 2016 一月 1

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Materials Chemistry

指紋 深入研究「Axial orientation control of zebrafish larvae using artificial cilia」主題。共同形成了獨特的指紋。

引用此