Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells

Ya Yun Hsu, Cheng Sheng Chen, Sheng-Nan Wu, Yuh Jyh Jong, Yi Ching Lo

研究成果: Article

77 引文 (Scopus)

摘要

Berberine (BBR) is a well-known anti-diabetic herbal medicine in Asia due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. Here, we identified the critical role of phosphatidylinositol 3-kinase (PI3K)/Akt involved BBR cellular defense mechanisms and first revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2)/heme oxygenase (HO)-1 induction in NSC34 motor neuron-like cells. BBR (0.1-10 nM) led to increasing insulin receptor expression, Akt phosphorylation and enhanced oxidant-sensitive Nrf2/HO-1 induction, which were blocked by a PI3K inhibitor, LY294002. In H 2O 2-treated cells, BBR significantly attenuated ROS production and increased cell viability, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (HO-1 and Nrf2), which also were blocked by LY294002. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential and decreasing the oxygen consumption rate. BBR-induced anti-apoptotic function was demonstrated by increasing anti-apoptotic protein Bcl-2 and survival of motor neuron protein (SMN) and by decreasing apoptotic proteins (cytochrome c, Bax and caspase). These results suggest that BBR, which is active at nanomolar concentration, is a potential neuroprotective agent via PI3K/Akt-dependent cytoprotective and antioxidant pathways.

原文English
頁(從 - 到)415-425
頁數11
期刊European Journal of Pharmaceutical Sciences
46
發行號5
DOIs
出版狀態Published - 2012 八月 15

指紋

Phosphatidylinositol 3-Kinase
Berberine
Motor Neurons
Heme Oxygenase-1
2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one
Survival of Motor Neuron 2 Protein
Oxidants
Antioxidants
Apoptosis Regulatory Proteins
Herbal Medicine
Mitochondrial Membrane Potential
Insulin Receptor
Neuroprotective Agents
Glycolysis
Caspases
Cytochromes c
Oxygen Consumption
Insulin Resistance
Cell Survival
Proteins

All Science Journal Classification (ASJC) codes

  • Pharmaceutical Science

引用此文

@article{c3d2cccf2d0b492fa1e6b80ea25a1c49,
title = "Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells",
abstract = "Berberine (BBR) is a well-known anti-diabetic herbal medicine in Asia due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. Here, we identified the critical role of phosphatidylinositol 3-kinase (PI3K)/Akt involved BBR cellular defense mechanisms and first revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2)/heme oxygenase (HO)-1 induction in NSC34 motor neuron-like cells. BBR (0.1-10 nM) led to increasing insulin receptor expression, Akt phosphorylation and enhanced oxidant-sensitive Nrf2/HO-1 induction, which were blocked by a PI3K inhibitor, LY294002. In H 2O 2-treated cells, BBR significantly attenuated ROS production and increased cell viability, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (HO-1 and Nrf2), which also were blocked by LY294002. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential and decreasing the oxygen consumption rate. BBR-induced anti-apoptotic function was demonstrated by increasing anti-apoptotic protein Bcl-2 and survival of motor neuron protein (SMN) and by decreasing apoptotic proteins (cytochrome c, Bax and caspase). These results suggest that BBR, which is active at nanomolar concentration, is a potential neuroprotective agent via PI3K/Akt-dependent cytoprotective and antioxidant pathways.",
author = "Hsu, {Ya Yun} and Chen, {Cheng Sheng} and Sheng-Nan Wu and Jong, {Yuh Jyh} and Lo, {Yi Ching}",
year = "2012",
month = "8",
day = "15",
doi = "10.1016/j.ejps.2012.03.004",
language = "English",
volume = "46",
pages = "415--425",
journal = "European Journal of Pharmaceutical Sciences",
issn = "0928-0987",
publisher = "Elsevier",
number = "5",

}

TY - JOUR

T1 - Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells

AU - Hsu, Ya Yun

AU - Chen, Cheng Sheng

AU - Wu, Sheng-Nan

AU - Jong, Yuh Jyh

AU - Lo, Yi Ching

PY - 2012/8/15

Y1 - 2012/8/15

N2 - Berberine (BBR) is a well-known anti-diabetic herbal medicine in Asia due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. Here, we identified the critical role of phosphatidylinositol 3-kinase (PI3K)/Akt involved BBR cellular defense mechanisms and first revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2)/heme oxygenase (HO)-1 induction in NSC34 motor neuron-like cells. BBR (0.1-10 nM) led to increasing insulin receptor expression, Akt phosphorylation and enhanced oxidant-sensitive Nrf2/HO-1 induction, which were blocked by a PI3K inhibitor, LY294002. In H 2O 2-treated cells, BBR significantly attenuated ROS production and increased cell viability, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (HO-1 and Nrf2), which also were blocked by LY294002. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential and decreasing the oxygen consumption rate. BBR-induced anti-apoptotic function was demonstrated by increasing anti-apoptotic protein Bcl-2 and survival of motor neuron protein (SMN) and by decreasing apoptotic proteins (cytochrome c, Bax and caspase). These results suggest that BBR, which is active at nanomolar concentration, is a potential neuroprotective agent via PI3K/Akt-dependent cytoprotective and antioxidant pathways.

AB - Berberine (BBR) is a well-known anti-diabetic herbal medicine in Asia due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. Here, we identified the critical role of phosphatidylinositol 3-kinase (PI3K)/Akt involved BBR cellular defense mechanisms and first revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2)/heme oxygenase (HO)-1 induction in NSC34 motor neuron-like cells. BBR (0.1-10 nM) led to increasing insulin receptor expression, Akt phosphorylation and enhanced oxidant-sensitive Nrf2/HO-1 induction, which were blocked by a PI3K inhibitor, LY294002. In H 2O 2-treated cells, BBR significantly attenuated ROS production and increased cell viability, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (HO-1 and Nrf2), which also were blocked by LY294002. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential and decreasing the oxygen consumption rate. BBR-induced anti-apoptotic function was demonstrated by increasing anti-apoptotic protein Bcl-2 and survival of motor neuron protein (SMN) and by decreasing apoptotic proteins (cytochrome c, Bax and caspase). These results suggest that BBR, which is active at nanomolar concentration, is a potential neuroprotective agent via PI3K/Akt-dependent cytoprotective and antioxidant pathways.

UR - http://www.scopus.com/inward/record.url?scp=84861189612&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84861189612&partnerID=8YFLogxK

U2 - 10.1016/j.ejps.2012.03.004

DO - 10.1016/j.ejps.2012.03.004

M3 - Article

C2 - 22469516

AN - SCOPUS:84861189612

VL - 46

SP - 415

EP - 425

JO - European Journal of Pharmaceutical Sciences

JF - European Journal of Pharmaceutical Sciences

SN - 0928-0987

IS - 5

ER -