TY - JOUR
T1 - Biocompatibility and radiosensitivity of a fiber optical-based dosimeter
T2 - biological applications
AU - Elsharkawi, Adel S.A.
AU - Elazab, Huda A.
AU - Askar, Mostafa A.
AU - Abdelrahman, Ibrahim Y.
AU - Arafa, Amany A.
AU - Gomma, Lofty R.
AU - Lo, Yu Lung
N1 - Publisher Copyright:
© 2024 Optica Publishing Group (formerly OSA). All rights reserved.
PY - 2024/5/1
Y1 - 2024/5/1
N2 - This study introduces a cutting-edge fiber-optic dosimetry (FOD) sensor designed for measuring radiation in biological settings. The accuracy and precision of dosimeters for small animals, particularly prolonged exposure to nonuniform radiation fields, are always challenging. A state-of-the-art in-vivo dosimeter utilizing glass-encapsulated Thermoluminescence cylindrical detector (TLD) was introduced. The FODs are implanted into the rat during a prolonged irradiation scenario involving137Cs where the rat has the freedom to move within a heterogeneous radiation domain. The implantation surgery was verified with X-ray computed tomography (CT) in addition to biochemical and pathological tests to assess the biocompatibility of FOD in vivo. A versatile FOD is designed for industrial and medical fields, which demand accurate and resilient radiation dosimeters. The dose measurements are associated with precise two-dimensional (2D) radiation distribution imaging. Three cylindrical FODs and three standards TLD_100 for each rat were tested. The measurements of peak irradiation before and after exposure reveal greater stability and superior sensitivity when compared to standard thermo-luminescence detectors in an in-vivo animal test. To the best of our knowledge, FOD testing on live animals is presented for the first time in this paper. Regarding the safety and biocompatibility of FOD, no morphological signs with any kind of inflammation or sensitivity toward the FOD material have been remarked. Moreover, with the current FOD, there is no oedema between the epidermal, dermal, and subdermal sections at the site of implantation. The results also show the stable levels of white blood cells (lymphocytes, granulocytes, MID) as blood inflammatory markers before surgery and at the time of extraction of the implanted dosimeters, thus confirming the biocompatibility for each optical fiber cylinder dosimeter. As a result, the new dosimeters have excellent biocompatibility in living tissues and have 100% accurate reusability intensity of the delivered radiation doses compared to TLD_100 which demonstrated a 45% reduction in its intensity accuracy.
AB - This study introduces a cutting-edge fiber-optic dosimetry (FOD) sensor designed for measuring radiation in biological settings. The accuracy and precision of dosimeters for small animals, particularly prolonged exposure to nonuniform radiation fields, are always challenging. A state-of-the-art in-vivo dosimeter utilizing glass-encapsulated Thermoluminescence cylindrical detector (TLD) was introduced. The FODs are implanted into the rat during a prolonged irradiation scenario involving137Cs where the rat has the freedom to move within a heterogeneous radiation domain. The implantation surgery was verified with X-ray computed tomography (CT) in addition to biochemical and pathological tests to assess the biocompatibility of FOD in vivo. A versatile FOD is designed for industrial and medical fields, which demand accurate and resilient radiation dosimeters. The dose measurements are associated with precise two-dimensional (2D) radiation distribution imaging. Three cylindrical FODs and three standards TLD_100 for each rat were tested. The measurements of peak irradiation before and after exposure reveal greater stability and superior sensitivity when compared to standard thermo-luminescence detectors in an in-vivo animal test. To the best of our knowledge, FOD testing on live animals is presented for the first time in this paper. Regarding the safety and biocompatibility of FOD, no morphological signs with any kind of inflammation or sensitivity toward the FOD material have been remarked. Moreover, with the current FOD, there is no oedema between the epidermal, dermal, and subdermal sections at the site of implantation. The results also show the stable levels of white blood cells (lymphocytes, granulocytes, MID) as blood inflammatory markers before surgery and at the time of extraction of the implanted dosimeters, thus confirming the biocompatibility for each optical fiber cylinder dosimeter. As a result, the new dosimeters have excellent biocompatibility in living tissues and have 100% accurate reusability intensity of the delivered radiation doses compared to TLD_100 which demonstrated a 45% reduction in its intensity accuracy.
UR - http://www.scopus.com/inward/record.url?scp=85192674313&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85192674313&partnerID=8YFLogxK
U2 - 10.1364/BOE.523849
DO - 10.1364/BOE.523849
M3 - Article
AN - SCOPUS:85192674313
SN - 2156-7085
VL - 15
SP - 3492
EP - 3506
JO - Biomedical Optics Express
JF - Biomedical Optics Express
IS - 5
ER -