Biodegradable implantation material: Mechanical properties and surface corrosion mechanism of Mg-1Ca-0.5Zr alloy

Yen Ting Chen, Fei Yi Hung, Jie Cheng Syu

研究成果: Article同行評審

2 引文 斯高帕斯(Scopus)

摘要

Mg alloy is suitable for biomedical implants as the mechanical properties of Mg are close to those of human bone. Ca is a major element in bone and Zr has a great grain refinement effect. Hence, we developed Mg-1Ca-0.5Zr alloy (XK105) as a biodegradable biomaterial and investigated its mechanical properties and surface corrosion mechanism. The results showed that heat treatment made the secondary phase homogeneous. Tensile tests showed that the heat treatment increased ductility, and that the tensile stress results in the extrusion direction showed better ductility than that in the transverse direction because of the fiber texture and extrusion characteristics. Electrochemistry test results showed that XK105 after heat treatment had a lower corrosion rate than that before heat treatment and that of pure Mg. XK105 after heat treatment formed a calcium phosphate layer after immersion in simulated body fluid; this layer protects Mg from corrosion. Surface roughening treatment increased corrosion because pits on the surface promoted pitting corrosion. This study developed Mg-1Ca-0.5Zr alloy as a biomedical implant material. The results can be used as a reference for the biomedical material industry.

原文English
文章編號857
期刊Metals
9
發行號8
DOIs
出版狀態Published - 2019 八月

All Science Journal Classification (ASJC) codes

  • Materials Science(all)

指紋 深入研究「Biodegradable implantation material: Mechanical properties and surface corrosion mechanism of Mg-1Ca-0.5Zr alloy」主題。共同形成了獨特的指紋。

引用此