Biological treatment of DMSO-containing wastewater from semiconductor industry under aerobic and methanogenic conditions

Hai Hsuan Cheng, Cheng Bing Liu, Yuan Yuan Lei, Yi Chu Chiu, Jasan Mangalindan, Chin Hwa Wu, Yi Ju Wu, Liang Ming Whang

研究成果: Article同行評審

21 引文 斯高帕斯(Scopus)

摘要

This study evaluated biological treatment of dimethyl sulfoxide (DMSO)-containing wastewater from semiconductor industry under aerobic and anaerobic conditions. DMSO concentration as higher as 1.5 g/L did not inhibit DMSO degradation efficiency in aerobic membrane bioreactor (MBR), while specific DMSO degradation rate at different initial DMSO-to-biomass (S0/X0) ratios from batch tests seemed to follow the Haldane-type kinetics. According to the microbial community analysis, Proteobacteria decreased from 88.2% to 26% as influent DMSO concentration increased, while Bacteroidetes, Parcubacteria, Saccharibacteria increased. Within the Bacteroidetes class, Flavobacterium and Laribacter genus significantly increased from less than 0.05%–26.8% and 13.4%, respectively, which might both be related to the DMS degradation. Hyphomicrobium and Thiobacillus, known as aerobic DMSO and DMS degraders, instead, decreased at higher DMSO conditions. Under methanogenic conditions, batch results implied DMSO concentrations higher than 3 g/L could be inhibitory, while DMSO and COD removal achieved 100% and 93%, respectively, using a pilot-scale anaerobic fluidized bed membrane bioreactor (AFMBR) with influent DMSO below 1.5 g/L. Results of terminal restriction fragment length polymorphism (TRFLP) analysis targeting on mcrA functional gene revealed that Methanomethylovorans sp. was dominant in AFMBR after 54 days of operation, indicating its importance on degrading DMS and mathanethiol (MT).

原文English
文章編號124291
期刊Chemosphere
236
DOIs
出版狀態Published - 2019 12月

All Science Journal Classification (ASJC) codes

  • 一般化學
  • 公共衛生、環境和職業健康
  • 污染
  • 健康、毒理學和誘變
  • 環境工程
  • 環境化學

指紋

深入研究「Biological treatment of DMSO-containing wastewater from semiconductor industry under aerobic and methanogenic conditions」主題。共同形成了獨特的指紋。

引用此