TY - JOUR
T1 - Biosorption of nickel, chromium and zinc by MerP-expressing recombinant Escherichia coli
AU - Kao, Wei Chen
AU - Huang, Chieh Chen
AU - Chang, Jo Shu
PY - 2008/10/1
Y1 - 2008/10/1
N2 - Escherichia coli hosts able to over-express metal-binding proteins (MerP) originating from Gram-positive (Bacillus cereus RC607) and Gram-negative (Pseudomonas sp. K-62) bacterial strains were used to adsorb Ni2+, Zn2+ and Cr3+ in aqueous solutions. The initial adsorption rate and adsorption capacity were determined to evaluate the performance of the biosorbents. With the expression of MerP protein, the metal adsorption capacity of the recombinant strains for Ni2+, Zn2+ and Cr3+ significantly improved. The cells carrying Gram-positive merP gene (GB) adsorbed Zn2+ and Cr3+ at a capacity of 22.3 and 0.98 mmol/g biomass, which is 121% and 72% higher, respectively, over that of the MerP-free host cells. Adsorption capacity of the cells carrying Gram-negative merP gene (GP) also increased 144% and 126% for Zn2+ and Cr3+, respectively. Both recombinant strains also exhibited 24% and 5% enhancement in adsorption of Ni2+ for GB and GP, respectively. The initial adsorption rate of the recombinant biosorbents was also higher than that of the MerP-free host, suggesting an increased metal-binding affinity with MerP expression. Severe cell damage on GB biosorbent was observed after Cr3+ adsorption, probably due to the metal toxicity effect on the cells.
AB - Escherichia coli hosts able to over-express metal-binding proteins (MerP) originating from Gram-positive (Bacillus cereus RC607) and Gram-negative (Pseudomonas sp. K-62) bacterial strains were used to adsorb Ni2+, Zn2+ and Cr3+ in aqueous solutions. The initial adsorption rate and adsorption capacity were determined to evaluate the performance of the biosorbents. With the expression of MerP protein, the metal adsorption capacity of the recombinant strains for Ni2+, Zn2+ and Cr3+ significantly improved. The cells carrying Gram-positive merP gene (GB) adsorbed Zn2+ and Cr3+ at a capacity of 22.3 and 0.98 mmol/g biomass, which is 121% and 72% higher, respectively, over that of the MerP-free host cells. Adsorption capacity of the cells carrying Gram-negative merP gene (GP) also increased 144% and 126% for Zn2+ and Cr3+, respectively. Both recombinant strains also exhibited 24% and 5% enhancement in adsorption of Ni2+ for GB and GP, respectively. The initial adsorption rate of the recombinant biosorbents was also higher than that of the MerP-free host, suggesting an increased metal-binding affinity with MerP expression. Severe cell damage on GB biosorbent was observed after Cr3+ adsorption, probably due to the metal toxicity effect on the cells.
UR - http://www.scopus.com/inward/record.url?scp=48049095681&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=48049095681&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2008.01.032
DO - 10.1016/j.jhazmat.2008.01.032
M3 - Article
C2 - 18313216
AN - SCOPUS:48049095681
SN - 0304-3894
VL - 158
SP - 100
EP - 106
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
IS - 1
ER -