Boron removal from boric acid wastewater by electrocoagulation using aluminum as sacrificial anode

Danis Kartikaningsih, Yu Jen Shih, Yao Hui Huang

研究成果: Article同行評審

23 引文 斯高帕斯(Scopus)


Electrocoagulation (EC) using metallic aluminum as anode and cathode for boron removal from solution was studied. The electrolytic parameters included pH, current density, and initial boron concentration for optimizing the EC process. Experimental results showed that removal efficiency was increased by elevating pH from 4.0 to 8.0, and then decreased at higher pH. The electrolytic efficacy was increased with increasing current density from 1.25 to 5.0 mA cm−2. With respect of energy consumption, 2.5 mA cm−2 of current density was acceptable for an effective EC of boron, while increasing boric acid from 10 to 100 ppm-B did not impair removal efficiency. NaCl as a supporting electrolyte promoted more anodic dissolution of aluminum from the electrode surface than that predicted by the Faraday's law. The optimal conditions under which 95% of boron was removed and less than 5 ppm-B remained in the electrolyte would be pH 8, four pairs of electrodes, and 2.5 mA cm−2 in 180 min as treating wastewaters containing 10–100 ppm-B. X-ray powder diffractometer and scanning electron microscope were used and results suggested that the irregular crystallites of hydroxide precipitates were composed of bayerite and boehmite phases simultaneously.

頁(從 - 到)150-155
期刊Sustainable Environment Research
出版狀態Published - 2016 七月 1

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Renewable Energy, Sustainability and the Environment
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution

指紋 深入研究「Boron removal from boric acid wastewater by electrocoagulation using aluminum as sacrificial anode」主題。共同形成了獨特的指紋。