Bounding volumes of singular fano threefolds

研究成果: Article同行評審

3 引文 斯高帕斯(Scopus)

摘要

Let (X, Δ) be an n-dimensional ϵ-klt log ℚ-Fano pair. We give an upper bound for the volume Vol(X, Δ) = (-(KX + Δ))n when n = 2 , or n = 3 and X is ℚ-factorial of ρ(X)=1 . This bound is essentially sharp for . The main idea is to analyze the covering families of tigers constructed in J. McKernan (Boundedness of log terminal fano pairs of bounded index, preprint, 2002, arXiv:0205214). Existence of an upper bound for volumes is related to the Borisov-Alexeev-Borisov Conjecture, which asserts boundedness of the set of ϵ-klt log ℚ-Fano varieties of a given dimension.

原文English
頁(從 - 到)37-73
頁數37
期刊Nagoya Mathematical Journal
224
DOIs
出版狀態Published - 2016 十二月 1

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

指紋 深入研究「Bounding volumes of singular fano threefolds」主題。共同形成了獨特的指紋。

引用此