Bridging Functional Groups Governing the Charge Transfer Dynamic in an Amorphous Carbon Nitride Allotropic Heterojunction toward Efficient Solar Hydrogen Evolution

Kuan Hsiang Huang, Sheng Shu Hou, Jih Jen Wu

研究成果: Article同行評審

摘要

Modulation of the charge transfer dynamic in amorphous carbon nitride allotropic heterojunctions by an alternation in bridging functional groups for the heptazine- and triazine-based fragments is demonstrated to boost the photocatalytic activity for hydrogen evolution. Pyrimidine-bridged and NH-bridged amorphous carbon nitride allotropic heterojunctions are synthesized by thermal polycondensation of a supramolecular complex. Due to the improved charge separation efficiency and visible-light harvesting ability, both allotropic heterojunctions present more than tenfold enhanced photocatalytic activities for hydrogen evolution compared to the conventional heptazine-based carbon nitride under visible-light illumination. Moreover, the photocatalytic activity of the NH-bridged carbon nitride allotropic heterojunction with type-II charge transfer dynamic is superior to the pyrimidine-bridged one with a Z-scheme characteristic. The findings in this study emphasize that the electronic structure at the heterojunction interface governed by the bridging group greatly influences the charge transfer dynamic and therefore is a crucial factor driving the photocatalytic activity of carbon nitride allotropic heterojunctions.

原文English
文章編號2000496
期刊Solar RRL
5
發行號1
DOIs
出版狀態Published - 2021 一月

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics
  • Energy Engineering and Power Technology
  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

指紋 深入研究「Bridging Functional Groups Governing the Charge Transfer Dynamic in an Amorphous Carbon Nitride Allotropic Heterojunction toward Efficient Solar Hydrogen Evolution」主題。共同形成了獨特的指紋。

引用此