Building a fault tolerant framework with deadline guarantee in big data stream computing environments

Dawei Sun, Guangyan Zhang, Chengwen Wu, Keqin Li, Weimin Zheng

研究成果: Article

12 引文 斯高帕斯(Scopus)

摘要

Big data stream computing systems should work continuously to process streams of on-line data. Therefore, fault tolerance is one of the key metrics of quality of service in big data stream computing. In this paper, we propose a fault tolerant framework with deadline guarantee for stream computing called FTDG. First, FTDG identifies the critical path of a data stream graph at a given data stream throughput, and quantifies the system reliability of a data stream graph. Second, FTDG allocates tasks by the fault tolerance aware heuristic and critical path scheduling mechanism. Third, FTDG online optimizes the task scheduling by reallocating the critical vertices on the critical path of the data stream graph to lower the response time and reduce system fluctuations. Theoretical as well as experimental results demonstrate that the FTDG makes a desirable trade-off between high fault tolerance and low response time objectives in big data stream computing environments.

原文English
頁(從 - 到)4-23
頁數20
期刊Journal of Computer and System Sciences
89
DOIs
出版狀態Published - 2017 十一月

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Networks and Communications
  • Computational Theory and Mathematics
  • Applied Mathematics

指紋 深入研究「Building a fault tolerant framework with deadline guarantee in big data stream computing environments」主題。共同形成了獨特的指紋。

  • 引用此