Bulk band structure and Fermi surface of nickel: A soft x-ray angle-resolved photoemission study

N. Kamakura, Y. Takata, T. Tokushima, Y. Harada, A. Chainani, K. Kobayashi, S. Shin

研究成果: Article同行評審

27 引文 斯高帕斯(Scopus)


We study the bulk band structure and Fermi surface of nickel metal by soft x-ray angle-resolved photoemission spectroscopy (SX ARPES). SX ARPES, using tunable photons from hν∼300 to 800 eV, facilitates depth-sensitive in-plane band mapping of Ni(100). Horizontal- and vertical-polarization- dependent studies are used to selectively enhance dipole-allowed transitions. While low-temperature (50 K) results provide band dispersions consistent with the direct transition model, room-temperature (300 K) studies confirm and quantify significant intensity loss due to nondirect transitions. The band maps provide band dispersions and identify all the bands in the Γ-X-W-W-X- Γ quadrant in momentum space. In particular, the results show that a hole pocket derived from the X2↓ down-spin band exists in bulk Ni. This is in contrast to results of surface-sensitive ultraviolet ARPES studies but consistent with other bulk-sensitive measurements. The Z1↓ band is also shown to have depth-sensitive band dispersion and Fermi surface crossings. In addition, the magnetically active Z2↓ down-spin band shows nearly flatband behavior. The Fermi surface and band dispersions determined by the present ARPES measurements are in good agreement with local density approximation band structure calculations. SX ARPES is thus a valuable probe of the intrinsic momentum-resolved electronic structure of solids.

期刊Physical Review B - Condensed Matter and Materials Physics
出版狀態Published - 2006

All Science Journal Classification (ASJC) codes

  • 電子、光磁材料
  • 凝聚態物理學


深入研究「Bulk band structure and Fermi surface of nickel: A soft x-ray angle-resolved photoemission study」主題。共同形成了獨特的指紋。