TY - JOUR
T1 - Cardiovascular diseases of developmental origins
T2 - Preventive aspects of gut microbiota-targeted therapy
AU - Hsu, Chien Ning
AU - Hou, Chih Yao
AU - Hsu, Wei Hsuan
AU - Tain, You Lin
N1 - Funding Information:
This research was funded by Chang Gung Memorial Hospital, Kaohsiung, Taiwan, grants CMRPG8J0253, CORPG8J0121, CORPG8L0121, CORPG8L0261, and CORPG8L0301.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/7/1
Y1 - 2021/7/1
N2 - Cardiovascular diseases (CVDs) can originate from early life. Accumulating evidence suggests that gut microbiota in early life is linked to CVDs in later life. Gut microbiota-targeted therapy has gained significant importance in recent decades for its health-promoting role in the prevention (rather than just treatment) of CVDs. Thus far, available gut microbiota-based treatment modalities used as reprogramming interventions include probiotics, prebiotics, and postbiotics. The purpose of this review is, first, to highlight current studies that link dysbiotic gut microbiota to the developmental origins of CVD. This is followed by a summary of the connections between the gut microbiota and CVD behind cardiovascular programming, such as short chain fatty acids (SCFAs) and their receptors, trimethylamine-N-oxide (TMAO), uremic toxins, and aryl hydrocarbon receptor (AhR), and the renin-angiotensin system (RAS). This review also presents an overview of how gut microbiota-targeted reprogramming interventions can prevent the developmental origins of CVD from animal studies. Overall, this review reveals that recent advances in gut microbiota-targeted therapy might provide the answers to reduce the global burden of CVDs. Still, additional studies will be needed to put research findings into practice.
AB - Cardiovascular diseases (CVDs) can originate from early life. Accumulating evidence suggests that gut microbiota in early life is linked to CVDs in later life. Gut microbiota-targeted therapy has gained significant importance in recent decades for its health-promoting role in the prevention (rather than just treatment) of CVDs. Thus far, available gut microbiota-based treatment modalities used as reprogramming interventions include probiotics, prebiotics, and postbiotics. The purpose of this review is, first, to highlight current studies that link dysbiotic gut microbiota to the developmental origins of CVD. This is followed by a summary of the connections between the gut microbiota and CVD behind cardiovascular programming, such as short chain fatty acids (SCFAs) and their receptors, trimethylamine-N-oxide (TMAO), uremic toxins, and aryl hydrocarbon receptor (AhR), and the renin-angiotensin system (RAS). This review also presents an overview of how gut microbiota-targeted reprogramming interventions can prevent the developmental origins of CVD from animal studies. Overall, this review reveals that recent advances in gut microbiota-targeted therapy might provide the answers to reduce the global burden of CVDs. Still, additional studies will be needed to put research findings into practice.
UR - http://www.scopus.com/inward/record.url?scp=85108975081&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85108975081&partnerID=8YFLogxK
U2 - 10.3390/nu13072290
DO - 10.3390/nu13072290
M3 - Review article
C2 - 34371800
AN - SCOPUS:85108975081
SN - 2072-6643
VL - 13
JO - Nutrients
JF - Nutrients
IS - 7
M1 - 2290
ER -